Browsing by Author "Brookshire, E. N. Jack"
Now showing 1 - 10 of 10
- Results Per Page
- Sort Options
Item Aboveground and belowground responses to cyanobacterial biofertilizer supplement in a semi-arid, perennial bioenergy cropping system(Wiley, 2021-08) Goemann, Hannah M.; Gay, Justin D.; Mueller, Rebecca C.; Brookshire, E. N. Jack; Miller, Perry; Poulter, Benjamin; Peyton, Brent M.The need for sustainable agricultural practices to meet the food, feed, and fuel demands of a growing global population while reducing detrimental environmental impacts has driven research in multi‐faceted approaches to agricultural sustainability. Perennial cropping systems and microbial biofertilizer supplements are two emerging strategies to increase agricultural sustainability that are studied in tandem for the first time in this study. During the establishment phase of a perennial switchgrass stand in SW Montana, USA, we supplemented synthetic fertilization with a nitrogen‐fixing cyanobacterial biofertilizer (CBF) and were able to maintain aboveground crop productivity in comparison to a synthetic only (urea) fertilizer treatment. Soil chemical analysis conducted at the end of the growing season revealed that late‐season nitrogen availability in CBF‐supplemented field plots increased relative to urea‐only plots. High‐throughput sequencing of bacterial/archaeal and fungal communities suggested fine‐scale responses of the microbial community and sensitivity to fertilization among arbuscular mycorrhizal fungi, Planctomycetes, Proteobacteria, and Actinobacteria. Given their critical role in plant productivity and soil nutrient cycling, soil microbiome monitoring is vital to understand the impacts of implementation of alternative agricultural practices on soil health.Item Climate mitigation potential and soil microbial response of cyanobacteria‐fertilized bioenergy crops in a cool semi‐arid cropland(Wiley, 2022-10) Gay, Justin D.; Goemann, Hannah M.; Currey, Bryce; Stoy, Paul C.; Christiansen, Jesper Riis; Miller, Perry R.; Poulter, Benjamin; Peyton, Brent M.; Brookshire, E. N. JackBioenergy carbon capture and storage (BECCS) systems can serve as decarbonization pathways for climate mitigation. Perennial grasses are a promising second-generation lignocellulosic bioenergy feedstock for BECCS expansion, but optimizing their sustainability, productivity, and climate mitigation potential requires an evaluation of how nitrogen (N) fertilizer strategies interact with greenhouse gas (GHG) and soil organic carbon (SOC) dynamics. Furthermore, crop and fertilizer choice can affect the soil microbiome which is critical to soil organic matter turnover, nutrient cycling, and sustaining crop productivity but these feedbacks are poorly understood due to the paucity of data from certain agroecosystems. Here, we examine the climate mitigation potential and soil microbiome response to establishing two functionally different perennial grasses, switchgrass (Panicum virgatum, C4) and tall wheatgrass (Thinopyrum ponticum, C3), in a cool semi-arid agroecosystem under two fertilizer applications, a novel cyanobacterial biofertilizer (CBF) and urea. We find that in contrast to the C4 grass, the C3 grass achieved 98% greater productivity and had a higher N use efficiency when fertilized. For both crops, the CBF produced the same biomass enhancement as urea. Non-CO2 GHG fluxes across all treatments were low and we observed a 3-year net loss of SOC under the C4 crop and a net gain under the C3 crop at a 0–30 cm soil depth regardless of fertilization. Finally, we detected crop-specific changes in the soil microbiome, including an increased relative abundance of arbuscular mycorrhizal fungi under the C3, and potentially pathogenic fungi in the C4 grass. Taken together, these findings highlight the potential of CBF-fertilized C3 crops as a second-generation bioenergy feedstock in semi-arid regions as a part of a climate mitigation strategy.Item Connections among soil, ground, and surface water chemistries characterize nitrogen loss from an agricultural landscape in the upper Missouri River basin(2018-01) Sigler, W. Adam; Ewing, Stephanie A.; Jones, Clain A.; Payn, Robert A.; Brookshire, E. N. Jack; Klassen, Jane K.; Jackson-Smith, Douglas; Weissmann, Gary S.Elevated nitrate in shallow aquifers is common in agricultural areas and remediation requires an understanding of nitrogen (N) leaching at a variety of spatial scales. Characterization of the drivers of nitrate leaching at the mesoscale level is needed to bridge from field-scale observations to the landscape-scale context, allowing informed water resource management decisions. Here we explore patterns in nitrate leaching rates across a depositional landform in the northern Great Plains within the Upper Missouri Basin, where the predominant land use is non-irrigated small grain production, and nitrate-N concentrations above 10 mg L1 are common. The shallow Moccasin terrace (260 km2) aquifer is bounded in vertical extent by underlying shale and is isolated from mountain front stream recharge, such that aquifer recharge is dominated by infiltration of precipitation through agricultural soils. This configuration presents a simple landform-scale water balance that we leveraged to estimate leaching rates using groundwater nitrate concentrations and surface water discharge, and quantify uncertainty using a Monte Carlo approach based on spatial variation in observations of groundwater nitrate concentrations. A participatory research approach allowed local farmer knowledge of the landscape to be incorporated into the study design, improved selection of and access to sample sites, and enhanced prospects for addressing nitrate leaching through collaborative understanding of system hydrology. Mean landform-scale nitrate-N leaching rates were 11 and 18 kg during the 2012-2014 study for the two largest catchments draining the terrace. Over a standard three-year crop rotation, these leaching rates represent 19 to 31% of typical fertilizer N application rates; however, leaching losses are likely derived not only from fertilizer but also from soil organic N mineralization, and are apparently higher during the post-fallow phase of the crop rotation. Groundwater apparent age is relatively young (0-5 yr) based on tritium-helium analysis, but whole-aquifer turnover time calculations are an order of magnitude longer (20-23 yr), suggesting changes in groundwater may lag behind changes in land management by years to decades.Item Global distribution and climate sensitivity of the tropical montane forest nitrogen cycle(Springer Nature, 2022-11) Gay, Justin D.; Currey, Bryce; Brookshire, E. N. JackTropical forests are pivotal to global climate and biogeochemical cycles, yet the geographic distribution of nutrient limitation to plants and microbes across the biome is unresolved. One long-standing generalization is that tropical montane forests are nitrogen (N)-limited whereas lowland forests tend to be N-rich. However, empirical tests of this hypothesis have yielded equivocal results. Here we evaluate the topographic signature of the ecosystem-level tropical N cycle by examining climatic and geophysical controls of surface soil N content and stable isotopes (δ15N) from elevational gradients distributed across tropical mountains globally. We document steep increases in soil N concentration and declining δ15N with increasing elevation, consistent with decreased microbial N processing and lower gaseous N losses. Temperature explained much of the change in N, with an apparent temperature sensitivity (Q10) of ~1.9. Although montane forests make up 11% of forested tropical land area, we estimate they account for >17% of the global tropical forest soil N pool. Our findings support the existence of widespread microbial N limitation across tropical montane forest ecosystems and high sensitivity to climate warming.Item Global distribution and drivers of relative contributions among soil nitrogen sources to terrestrial plants(Springer Science and Business Media LLC, 2024-07) Hu, Chao-Chen; Liu, Xueyan; Driscoll, Avery W.; Kuang, Yuanwen; Brookshire, E. N. Jack; Lü, Xiao-Tao; Chen, Chong-Juan; Song, Wei; Mao, Rong; Liu, Cong-Qiang; Houlton, Benjamin Z.Soil extractable nitrate, ammonium, and organic nitrogen (N) are essential N sources supporting primary productivity and regulating species composition of terrestrial plants. However, it remains unclear how plants utilize these N sources and how surface-earth environments regulate plant N utilization. Here, we establish a framework to analyze observational data of natural N isotopes in plants and soils globally, we quantify fractional contributions of soil nitrate (fNO3-), ammonium (fNH4+), and organic N (fEON) to plant-used N in soils. We find that mean annual temperature (MAT), not mean annual precipitation or atmospheric N deposition, regulates global variations of fNO3-, fNH4+, and fEON. The fNO3- increases with MAT, reaching 46% at 28.5 °C. The fNH4+ also increases with MAT, achieving a maximum of 46% at 14.4 °C, showing a decline as temperatures further increase. Meanwhile, the fEON gradually decreases with MAT, stabilizing at about 20% when the MAT exceeds 15 °C. These results clarify global plant N-use patterns and reveal temperature rather than human N loading as a key regulator, which should be considered in evaluating influences of global changes on terrestrial ecosystems.Item Isotopic signals in an agricultural watershed suggest denitrification is locally intensive in riparian areas but extensive in upland soils(Springer Science and Business Media LLC, 2022-02) Sigler, W. A.; Ewing, S. A.; Wankel, S. D.; Jones, C. A.; Leuthold, S.; Brookshire, E. N. Jack; Payn, R. A.Nitrogen loss from cultivated soils threatens the economic and environmental sustainability of agriculture. Nitrate (NO3−) derived from nitrification of nitrogen fertilizer and ammonified soil organic nitrogen may be lost from soils via denitrification, producing dinitrogen gas (N2) or the greenhouse gas nitrous oxide (N2O). Nitrate that accumulates in soils is also subject to leaching loss, which can degrade water quality and make NO3− available for downstream denitrification. Here we use patterns in the isotopic composition of NO3− observed from 2012 to 2017 to characterize N loss to denitrification within soils, groundwater, and stream riparian corridors of a non-irrigated agroecosystem in the northern Great Plains (Judith River Watershed, Montana, USA). We find evidence for denitrification across these domains, expressed as a positive linear relationship between δ15N and δ18O values of NO3−, as well as increasing δ15N values with decreasing NO3− concentration. In soils, isotopic evidence of denitrification was present during fallow periods (no crop growing), despite net accumulation of NO3− from the nitrification of ammonified soil organic nitrogen. We combine previous results for soil NO3− mass balance with δ15N mass balance to estimate denitrification rates in soil relative to groundwater and streams. Substantial denitrification from soils during fallow periods may be masked by nitrification of ammonified soil organic nitrogen, representing a hidden loss of soil organic nitrogen and an under-quantified flux of N to the atmosphere. Globally, cultivated land spends ca. 50% of time in a fallow condition; denitrification in fallow soils may be an overlooked but globally significant source of agricultural N2O emissions, which must be reduced along-side other emissions to meet Paris Agreement goals for slowing global temperature increase.Item Long-term decline in grassland productivity driven by increasing dryness(2015) Brookshire, E. N. Jack; Weaver, T.Increasing aridity and drought severity forecast for many land areas could reduce the land carbon (C) sink. However, with limited long-term direct measures, it is difficult to distinguish direct drying effects from counter effects of CO2 enrichment and nitrogen (N) deposition. Here, we document a >50% decline in production of a native C3 grassland over four decades and assign the forcing and timing to increasing aridity and specifically to declining late-summer rainfall. Analysis of C and N stable isotopes in biomass suggests that enhanced water use efficiency via CO2 enrichment may have slightly ameliorated the productivity decline but that changes in N had no effects. Identical declines in a long-term snow-addition experiment definitively identified increasing late-summer dryness as the cause. Our results demonstrate lasting consequences of recent climate change on grassland production and underscore the importance of understanding past climate–ecosystem coupling to predicting future responses to changing climate.Item Long-term snowpack manipulation promotes large loss of bioavailable nitrogen and phosphorus in a subalpine grassland(2015-05) Yano, Yuriko; Brookshire, E. N. Jack; Holsinger, Jordan P.; Weaver, T.Nutrient retention in ecosystems requires synchrony between the supply of bioavailable nutrients released via mineralization and nutrient uptake by plants. Though disturbance and chronic nutrient loading are known to alter nitrogen (N) and phosphorus (P) dynamics and induce nutrient export, whether long-term shifts in climate affect source-sink synchrony, and ultimately primary productivity, remains uncertain. This is particularly true for snow-dominated ecosystems, which are naturally subject to lags between nutrient inputs and uptake. To address how climate change may affect nutrient source-sink synchrony we examined the impacts of deepened snowpack on N and P losses in a subalpine grassland in the Northern Rocky Mountains, USA, where we have experimentally increased snowpack depths by two- and four-times ambient snow for 45 years. Long-term snow addition resulted in remarkably high levels of bioavailable-N leaching (up to 16 kg ha^-1 year^-1) that were 11-80 times higher than those under ambient snowpack. Estimated bioavailable-P losses also increased with snow addition, but to a lesser degree (up to 0.3 kg ha^-1 year^-1), indicating greater enhancement of N losses over P losses during snowmelt. Because these losses could not be explained by changes in nutrient inputs in snowpack or by changes in plant-soil turnover, our results suggest that high bioavailable-N leaching under deep snowpack originates not from a lack of N limitation of plant productivity, but rather from enhanced subnivean microbial processes followed by snowmelt leaching prior to the growing season. This is supported by reduced soil N pools in the snow treatments. Snow-dominated regions are projected to experience shifts in seasonal snowpack regime. These shifts may ultimately affect the stoichiometric balance between available N and P and future plant productivity.Item Opportunities and Trade-offs among BECCS and the Food, Water, Energy, Biodiversity, and Social Systems Nexus at Regional Scales(2018-01) Stoy, Paul C.; Ahmed, Selena; Jarchow, Meghann; Rashford, Benjamin; Swanson, David; Albeke, Shannon; Bromley, Gabriel T.; Brookshire, E. N. Jack; Dixon, Mark D.; Haggerty, Julia Hobson; Miller, Perry R.; Peyton, Brent M.; Royem, Alisa; Spangler, Lee H.; Straub, Crista; Poulter, BenjaminCarbon dioxide must be removed from the atmosphere to limit climate change to 2°C or less. The integrated assessment models used to develop climate policy acknowledge the need to implement net negative carbon emission strategies, including bioenergy with carbon capture and storage (BECCS), to meet global climate imperatives. The implications of BECCS for the food, water, energy, biodiversity, and social systems (FWEBS) nexus at regional scales, however, remain unclear. Here, we present an interdisciplinary research framework to examine the trade-offs as well as the opportunities among BECCS scenarios and FWEBS on regional scales using the Upper Missouri River Basin (UMRB) as a case study. We describe the physical, biological, and social attributes of the UMRB, and we use grassland bird populations as an example of how biodiversity is influenced by energy transitions, including BECCS. We then outline a "conservation" BECCS strategy that incorporates societal values and emphasizes biodiversity conservation.Item Water quality, nutrients, and stable isotopic signatures of particulates and vegetation in a mangrove ecosystem exposed to past anthropogenic perturbations(2020-03) Valiela, Ivan; Juman, Rahanna; Asmath, Hamish; Hanacek, Daniella; Lloret, Javier; Elmstrom, Elizabeth; Chenoweth, Kelsey; Brookshire, E. N. JackWater quality in mangrove estuaries within Caroni Swamp, Trinidad is impaired by a combination of recent increases in nitrogen loads and lingering effects of a series of reclamation efforts that reduced tidal exchanges and fostered low oxygen and high ammonium concentrations, conditions that are relatively unusual for estuaries. Concentrations of available nitrogen diminish down-estuary, with an overall within-estuary interception of about 25% of total dissolved nitrogen. Caroni Swamp remains a productive mangrove environment, and a tourist attraction, in spite of failed and continuing reclamation efforts and increased N loads, a demonstration of remarkable resilience. Developing ecosystem-based management to support that resilience will benefit from improved understanding of processes involved in nitrogen retention and losses, consideration of the consequences in intensifying land use on contributing watersheds and plans to ease tidal water exchanges and diminish extent of shallow and stagnant areas.