Browsing by Author "Caldwell, D. E."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Biofilms, naturally occurring communities of immobilized cells(1994) McLean, Robert J. C.; Caldwell, D. E.; Costerton, J. WilliamThe concept of using immobilized cells (addressed in other chapters of this book) has greatly enhanced the industrial scale production of a number of secondary metabolites by microorganisms. Generally the organisms are confined within a supporting matrix such as carrageenin or agar. In this environment, cellular growth is greatly reduced and the production of secondary metabolites thereby enhanced. Separation of microbial products from the immobilized culture is also facilitated due to the ease with which the relatively large clusters of cells can be removed.Item Digital image analysis of growth and starvation responses of a surface-colonizing acinetobacter sp.(1995-02) James, Garth A.; Korber, D. R.; Caldwell, D. E.; Costerton, J. WilliamSurface growth of an Acinetobacter sp. cultivated under several nutrient regimens was examined by using continuous-flow slide culture, phase-contrast microscopy, scanning confocal laser microscopy, and computer image analysis. Irrigation of attached coccoid stationary-phase Acinetobacter sp. cells with high-nutrient medium resulted in a transition from coccoid to bacillar morphology. Digital image analysis revealed that this transition was biphasic. During phase I, both the length and the width of cells increased. In contrast, cell width remained constant during phase II, while both cell length and cell area increased at a rate greater than in phase I. Cells were capable of growth and division without morphological transition when irrigated with a low-nutrient medium. Rod-shaped cells reverted to cocci by reduction-division when irrigated with starvation medium. This resulted in conservation of cell area (biomass) with an increase in cell number. In addition, the changes in cell morphology were accompanied by changes in the stability of cell attachment. During phase I, coccoid cells remained firmly attached. Following transition in high-nutrient medium, bacillar cells displayed detachment, transient attachment, and drifting behaviors, resulting in a spreading colonization pattern. In contrast, cells irrigated with a low-nutrient medium remained firmly attached to the surface and eventually formed tightly packed microcolonies. It is hypothesized that the coccoid and bacillar Acinetobacter sp. morphotypes and associated behavior represent specialized physiological adaptations for attachment and colonization in low-nutrient systems (coccoid morphotype) or dispersion under high-nutrient conditions (bacillar morphotype).Item Microbial Biofilms(1995) Costerton, J. William; Lewandowski, Zbigniew; Caldwell, D. E.; Korber, D. R.; Lappin-Scott, H. M.Item Minireview: Biofilms, the customized microniche(1994-04) Costerton, J. William; Lewandowski, Zbigniew; de Beer, Dirk; Caldwell, D. E.; Korber, D. R.; James, Garth A.Item Optical sectioning of microbial biofilms(1991-10) Lawrence, J. R.; Korber, D. R.; Hoyle, B. D.; Costerton, J. William; Caldwell, D. E.Scanning confocal laser microscopy (SCLM) was used to visualize fully hydrated microbial biofilms. The improved rejection of out-of-focus haze and the increased resolution of SCLM made it preferable to conventional phase microscopy for the analysis of living biofilms. The extent of image improvement was dependent on the characteristics of individual biofilms and was most apparent when films were dispersed in three dimensions, when they were thick, and when they contained a high number of cells. SCLM optical sections were amenable to quantitative computer-enhanced microscopy analyses, with minimal interference originating from overlying or underlying cell material. By using SCLM in conjunction with viable negative fluorescence staining techniques, horizontal (xy) and sagittal (xz) sections of intact biofilms of Pseudomonas aeruginosa, Pseudomonas fluorescens, and Vibrio parahaemolyticus were obtained. These optical sections were then analyzed by image-processing techniques to assess the distribution of cellular and noncellular areas within the biofilm matrices. The Pseudomonas biofilms were most cell dense at their attachment surfaces and became increasingly diffuse near their outer regions, whereas the Vibrio biofilms exhibited the opposite trend. Biofilms consisting of different species exhibited distinctive arrangements of the major biofilm structural components (cellular and extracellular materials and space). In general, biofilms were found to be highly hydrated, open structures composed of 73 to 98% extracellular materials and space. The use of xz sectioning revealed more detail of biofilm structure, including the presence of large void spaces within the Vibrio biofilms. In addition, three-dimensional reconstructions of biofilms were constructed and were displayed as stereo pairs. Application of the concepts of architectural analysis to mixed- or pure-species biofilms will allow detailed examination of the relationships among biofilm structure, adaptation, and response to stress.