Browsing by Author "Cantini, Niccolò"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Exploration of nitrogen heterocycle scaffolds for the development of potent human neutrophil elastase inhibitors(Elsevier BV, 2021-01) Cantini, Niccolò; Khlebnikov, Andrei I.; Crocetti, Letizia; Schepetkin, Igor A; Floresta, Giuseppe; Guerrini, Gabriella; Vergelli, Claudia; Bartolucci, Gianluca; Quinn, Mark T.; Giovannoni, Maria PaolaHuman neutrophil elastase (HNE) is a potent protease that plays an important physiological role in many processes but is also involved in a variety of pathologies that affect the pulmonary system. Thus, compounds able to inhibit HNE proteolytic activity could represent effective therapeutics. We present here a new series of pyrazolopyridine and pyrrolopyridine derivatives as HNE inhibitors designed as modifications of our previously synthesized indazoles and indoles in order to evaluate effects of the change in position of the nitrogen and/or the insertion of an additional nitrogen in the scaffolds on biological activity and chemical stability. We obtained potent HNE inhibitors with IC50 values in the low nanomolar range (10–50 nM), and some compounds exhibited improved chemical stability in phosphate buffer (t1/2 > 6 h). Molecular modeling studies demonstrated that inhibitory activity was strictly dependent on the formation of a Michaelis complex between the OH group of HNE Ser195 and the carbonyl carbon of the inhibitor. Moreover, in silico ADMET calculations predicted that most of the new compounds would be optimally absorbed, distributed, metabolized, and excreted. Thus, these new and potent HNE inhibitors represent novel leads for future therapeutic development.Item Synthesis, biological evaluation, molecular modeling, and structural analysis of new pyrazole and pyrazolone derivatives as N-formyl peptide receptors agonists(Wiley, 2021-06) Vergelli, Claudia; Khlebnikov, Andrei I.; Crocetti, Letizia; Guerrini, Gabriella; Cantini, Niccolò; Kirpotina, Liliya N.; Schepetkin, Igor A.; Cilibrizzi, Agostino; Quinn, Mark T.; Rossi, Patrizia; Paoli, Paola; Giovannoni, Maria PaolaN- formyl peptide receptors (FPR1, FPR2, and FPR3) play key roles in the regulation of inflammatory processes, and recently, it was demonstrated that FPR1 and FPR2 have a dual role in the progression/suppression of some cancers. Therefore, FPRs represent an important therapeutic target for the treatment of both cancer and inflammatory diseases. Previously, we identified selective or mixed FPR agonists with pyridazinone or pyridinone scaffolds showing a common 4-(bromophenyl)acetamide fragment, which was essential for activity. We report here new pyrazole and pyrazolone derivatives as restricted analogues of the above 6-membered compounds, all exhibiting the same 4-bromophenylacetamide side chain. Most new products had low or absent FPR agonist activity, suggesting that the pyrazole nucleus was not appropriate for FPR agonists. This hypothesis was confirmed by molecular modeling studies, which highlighted that the five-membered scaffold was responsible for a worse arrangement of the molecules in the receptor binding site.