Browsing by Author "Chang, Connie B."
Now showing 1 - 13 of 13
- Results Per Page
- Sort Options
Item Antiviral responses in a Jamaican fruit bat intestinal organoid model of SARS-CoV-2 infection(Springer Science and Business Media LLC, 2023-10) Hashimi, Marziah; Sebrell, T. Andrew; Hedges, Jodi F.; Snyder, Deann; Lyon, Katrina N.; Byrum, Stephanie D.; Mackintosh, Samuel G.; Crowley, Dan; Cherne, Michelle D.; Skwarchuk, David; Robison, Amanda; Sidar, Barkan; Kunze, Anja; Loveday, Emma K.; Taylor, Matthew P.; Chang, Connie B.; Wilking, James N.; Walk, Seth T.; Schountz, Tony; Jutila, Mark A.; Bimczok, DianeBats are natural reservoirs for several zoonotic viruses, potentially due to an enhanced capacity to control viral infection. However, the mechanisms of antiviral responses in bats are poorly defined. Here we established a Jamaican fruit bat (JFB, Artibeus jamaicensis) intestinal organoid model of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Upon infection with SARS-CoV-2, increased viral RNA and subgenomic RNA was detected, but no infectious virus was released, indicating that JFB organoids support only limited viral replication but not viral reproduction. SARS-CoV-2 replication was associated with significantly increased gene expression of type I interferons and inflammatory cytokines. Interestingly, SARS-CoV-2 also caused enhanced formation and growth of JFB organoids. Proteomics revealed an increase in inflammatory signaling, cell turnover, cell repair, and SARS-CoV-2 infection pathways. Collectively, our findings suggest that primary JFB intestinal epithelial cells mount successful antiviral interferon responses and that SARS-CoV-2 infection in JFB cells induces protective regenerative pathways.Item Artifact-free quantification and sequencing of rare recombinant viruses by using drop-based microfluidics(2015-10) Tao, Ye; Rotem, Assaf; Zhang, Huidan; Cockrell, Shelley K.; Koehler, Stephan A.; Chang, Connie B.; Ung, Lloyd W.; Cantalupo, Paul G.; Ren, Yukun; Lin, Jeffrey S.; Feldman, Andrew B.; Wobus, Christiane E.; Pipas, James M.; Weitz, David A.Recombination is an important driver in the evolution of viruses and thus is key to understanding viral epidemics and improving strategies to prevent future outbreaks. Characterization of rare recombinant subpopulations remains technically challenging because of artifacts such as artificial recombinants, known as chimeras, and amplification bias. To overcome this, we have developed a high-throughput microfluidic technique with a second verification step in order to amplify and sequence single recombinant viruses with high fidelity in picoliter drops. We obtained the first artifact-free estimate of in vitro recombination rate between murine norovirus strains MNV-1 and WU20 co-infecting a cell (P(rec) = 3.3 x 10(-4) ± 2 x 10(-5) ) for a 1205 nt region. Our approach represents a time- and cost-effective improvement over current methods, and can be adapted for genomic studies requiring artifact- and bias-free selective amplification, such as microbial pathogens, or rare cancer cells.Item Digital droplet RT-LAMP increases speed of SARS-CoV-2 viral RNA detection(Wiley, 2024-06) Yuan, Yuan; Ellis, Perry; Tao, Ye; Bikos, Dimitri A.; Loveday, Emma K.; Thomas, Mallory M.; Wilking, James N.; Chang, Connie B.; Ye, Fangfu; Weitz, David A.Nucleic acid amplification testing (NAAT) remains one of the most reliable methods for pathogen identification. However, conventional bulk NAATs may not be sufficiently fast or sensitive enough for the detection of clinically-relevant pathogens in point-of-care testing. Here, we have developed a digital droplet RT-LAMP (ddRT-LAMP) assay that rapidly and quantitatively detects the SARS-CoV-2 viral E gene in microfluidic drops. Droplet partitioning using ddRT-LAMP significantly accelerates detection times across a wide range of template concentrations compared to bulk RT-LAMP assays. We discover that a reduction in droplet diameter decreases assay times up to a certain size, upon which surface adsorption of the RT-LAMP polymerase reduces reaction efficiency. Optimization of drop size and polymerase concentration enables rapid, sensitive, and quantitative detection of the SARS-CoV-2 E gene in only 8 min. These results highlight the potential of ddRT-LAMP assays as an excellent platform for quantitative point-of-care testing.Item DropSOAC: Stabilizing Microfluidic Drops for Time-Lapse Quantification of Single-Cell Bacterial Physiology(2019-09) Pratt, Shawna L.; Zath, Geoffrey K.; Williamson, Kelly S.; Franklin, Michael J.; Chang, Connie B.The physiological heterogeneity of cells within a microbial population imparts resilience to stresses such as antimicrobial treatments and nutrient limitation. This resilience is partially due to a subpopulation of cells that can survive such stresses and regenerate the community. Microfluidic approaches now provide a means to study microbial physiology and bacterial heterogeneity at the single cell level, improving our ability to isolate and examine these subpopulations. Drop-based microfluidics provides a high-throughput approach to study individual cell physiology within bacterial populations. Using this approach, single cells are isolated from the population and encapsulated in growth medium dispersed in oil using a 15 μm diameter drop making microfluidic device. The drops are arranged as a packed monolayer inside a polydimethylsiloxane (PDMS) microfluidic device. Growth of thousands of individual cells in identical microenvironments can then be imaged using confocal laser scanning microscopy (CLSM). A challenge for this approach has been the maintenance of drop stability during extended time-lapse imaging. In particular, the drops do not maintain their volume over time during incubation in PDMS devices, due to fluid transport into the porous PDMS surroundings. Here, we present a strategy for PDMS device preparation that stabilizes drop position and volume within a drop array on a microfluidic chip for over 20 h. The stability of water-in-oil drops is maintained by soaking the device in a reservoir containing both water and oil in thermodynamic equilibrium. This ensures that phase equilibrium of the drop emulsion fluids within the porous PDMS material is maintained during drop incubation and imaging. We demonstrate the utility of this approach, which we label DropSOAC (DropStabilization On AChip), for time-lapse studies of bacterial growth. We characterize growth of Pseudomonas aeruginosa and its Δhpf mutant derivative during resuscitation and growth following starvation. We demonstrate that growth rate and lag time heterogeneity of hundreds of individual bacterial cells can be determined starting from single isolated cells. The results show that the DropSOAC capsule provides a high-throughput approach toward studies of microbial physiology at the single cell level, and can be used to characterize physiological differences of cells from within a larger population.Item Metabolomic Profiling and Mechanotransduction of Single Chondrocytes Encapsulated in Alginate Microgels(MDPI AG, 2022-03) Fredrikson, Jacob P.; Brahmachary, Priyanka P.; Erdoğan, Ayten E.; Archambault, Zachary K.; Wilking, James N.; June, Ronald K.; Chang, Connie B.Articular cartilage is comprised of two main components, the extracellular matrix (ECM) and the pericellular matrix (PCM). The PCM helps to protect chondrocytes in the cartilage from mechanical loads, but in patients with osteoarthritis, the PCM is weakened, resulting in increased chondrocyte stress. As chondrocytes are responsible for matrix synthesis and maintenance, it is important to understand how mechanical loads affect the cellular responses of chondrocytes. Many studies have examined chondrocyte responses to in vitro mechanical loading by embedding chondrocytes in 3-D hydrogels. However, these experiments are mostly performed in the absence of PCM, which may obscure important responses to mechanotransduction. Here, drop-based microfluidics is used to culture single chondrocytes in alginate microgels for cell-directed PCM synthesis that closely mimics the in vivo microenvironment. Chondrocytes formed PCM over 10 days in these single-cell 3-D microenvironments. Mechanotransduction studies were performed, in which single-cell microgels mimicking the cartilage PCM were embedded in high-stiffness agarose. After physiological dynamic compression in a custom-built bioreactor, microgels exhibited distinct metabolomic profiles from both uncompressed and monolayer controls. These results demonstrate the potential of single cell encapsulation in alginate microgels to advance cartilage tissue engineering and basic chondrocyte mechanobiology.Item Mineralogy of microbially induced calcium carbonate precipitates formed using single cell drop-based microfluidics(2020-10) Zambare, Neerja M.; Naser, Nada Y.; Gerlach, Robin; Chang, Connie B.Microbe-mineral interactions are ubiquitous and can facilitate major biogeochemical reactions that drive dynamic Earth processes such as rock formation. One example is microbially induced calcium carbonate precipitation (MICP) in which microbial activity leads to the formation of calcium carbonate precipitates. A majority of MICP studies have been conducted at the mesoscale but fundamental questions persist regarding the mechanisms of cell encapsulation and mineral polymorphism. Here, we are the first to investigate and characterize precipitates on the microscale formed by MICP starting from single ureolytic E. coli MJK2 cells in 25 µm diameter drops. Mineral precipitation was observed over time and cells surrounded by calcium carbonate precipitates were observed under hydrated conditions. Using Raman microspectroscopy, amorphous calcium carbonate (ACC) was observed first in the drops, followed by vaterite formation. ACC and vaterite remained stable for up to 4 days, possibly due to the presence of organics. The vaterite precipitates exhibited a dense interior structure with a grainy exterior when examined using electron microscopy. Autofluorescence of these precipitates was observed possibly indicating the development of a calcite phase. The developed approach provides an avenue for future investigations surrounding fundamental processes such as precipitate nucleation on bacteria, microbe-mineral interactions, and polymorph transitions.Item New technologies for studying biofilms(2015-08) Franklin, Michael J.; Chang, Connie B.; Akiyama, Tatsuya; Bothner, BrianThe results of recent biofilm characterizations have helped reveal the complexities of these surface-associated communities of microorganisms. The activities of the cells and the structure of the extracellular matrix material demonstrate that biofilm bacteria engage in a variety of physiological behaviors that are distinct from planktonic cells (1 – 3 ). For example, bacteria in biofilms are adapted to growth on surfaces, and most produce adhesins and extracellular polymers that allow the cells to firmly adhere to the surfaces or to neighboring cells ( 4 – 6 ). The extracellular material of biofilms contains polysaccharides, proteins, and DNA that form a glue-like substance for adhesion to the surface and for the three-dimensional (3D) biofilm architecture ( 4 ). The matrix material, although produced by the individual cells, forms structures that provide benefits for the entire community, including protection of the cells from various environmental stresses ( 7 – 9 ). Biofilm cells form a community and engage in intercellular signaling activities ( 10 – 19 ). Diffusible signaling molecules and metabolites provide cues for expression of genes that may benefit the entire community, such as genes for production of extracellular enzymes that allow the biofilm bacteria to utilize complex nutrient sources ( 18 , 20 – 22 ). Biofilm cells are not static. Many microorganisms have adapted to surface-associated motility, such as twitching and swarming motility ( 23 – 28 ). Cellular activities, including matrix production, intercellular signaling, and surface-associated swarming motility suggest that biofilms engage in communal activities. As a result, biofilms have been compared to multicellular organs where cells differentiate with specialized functions ( 2 , 29 ). However, bacteria do not always cooperate with each other. Biofilms are also sites of intense competition. The bacteria within biofilms compete for nutrients and space by producing toxic chemicals to inhibit or kill neighboring cells or inject toxins directly into neighboring cells through type VI secretion ( 30 – 33 ). Therefore, biofilm cells exhibit both communal and competitive activities.Item Open-source pneumatic pressure pump for drop-based microfluidic flow controls(IOP Publishing, 2023-07) Sanchez, Humberto S.; Chang, Connie B.An open-source pneumatic pressure pump is engineered for driving fluid flow in a microfluidic device. It is designed to be a cost-effective and customizable alternative to commercial systems. The pneumatic pressure pump utilizes a single open-source microcontroller to control four dual-valve pressure regulators. The control scheme is written in the Arduino development environment and the user interface is written in Python. The pump was used to pressurize water and a fluorinated oil that have similar viscosities. The pump can accurately control pressures to a resolution of less than 0.02 psig with rapid response times of less than one second, overshoot of desired pressures by less than 30%, and setting response times of less than two seconds. The pump was also validated in its ability to produce water-in-oil drops using a drop-making microfluidic device. The resultant drop size scaled as expected with the pressures applied to the emulsion phases. The pump is the first custom-made dual-valve regulator that is used to precisely control fluid flow in a microfluidic device. The presented design is an advancement towards making more fully open-source pneumatic pressure pumps for controlling flow in microfluidic devices.Item Pericellular Matrix Formation and Atomic Force Microscopy of Single Primary Human Chondrocytes Cultured in Alginate Microgels(Wiley, 2023-09) Fredrikson, Jacob P.; Brahmachary, Priyanka P.; June, Ronald K.; Cox, Lewis M.; Chang, Connie B.One of the main components of articular cartilage is the chondrocyte's pericellular matrix (PCM), which is critical for regulating mechanotransduction, biochemical cues, and healthy cartilage development. Here, individual primary human chondrocytes (PHC) are encapsulated and cultured in 50 µm diameter alginate microgels using drop-based microfluidics. This unique culturing method enables PCM formation and manipulation of individual cells. Over ten days, matrix formation is observed using autofluorescence imaging, and the elastic moduli of isolated cells are measured using AFM. Matrix production and elastic modulus increase are observed for the chondrons cultured in microgels. Furthermore, the elastic modulus of cells grown in microgels increases ≈ten-fold over ten days, nearly reaching the elastic modulus of in vivo PCM. The AFM data is further analyzed using a Gaussian mixture model and shows that the population of PHCs grown in microgels exhibit two distinct populations with elastic moduli averaging 9.0 and 38.0 kPa. Overall, this work shows that microgels provide an excellent culture platform for the growth and isolation of PHCs, enabling PCM formation that is mechanically similar to native PCM. The microgel culture platform presented here has the potential to revolutionize cartilage regeneration procedures through the inclusion of in vitro developed PCM.Item Resuscitation of Pseudomonas aeruginosa from dormancy requires hibernation promoting factor (PA4463) for ribosome preservation(2017-03) Akiyama, Tatsuya; Williamson, Kerry S.; Schaefer, Robert; Pratt, Shawna; Chang, Connie B.; Franklin, Michael J.Pseudomonas aeruginosa biofilm infections are difficult to treat with antibiotic therapy in part because the biofilms contain subpopulations of dormant antibiotic-tolerant cells. The dormant cells can repopulate the biofilms following alleviation of antibiotic treatments. While dormant, the bacteria must maintain cellular integrity, including ribosome abundance, to reinitiate the de novo protein synthesis required for resuscitation. Here, we demonstrate that the P. aeruginosa gene PA4463 [hibernation promoting factor (HPF)], but not the ribosome modulation factor (PA3049), is required for ribosomal NA preservation during prolonged nutrient starvation conditions. Single-cell–level studies using fluorescence in situ hybridization (FISH) and growth in microfluidic drops demonstrate that, in the absence of hpf, the rRNA abundances of starved cells decrease to levels that cause them to lose their ability to resuscitate from starvation, leaving intact nondividing cells. P. aeruginosa defective in the stringent response also had reduced ability to resuscitate from dormancy. However, FISH analysis of the starved stringent response mutant showed a bimodal response where the individual cells contained either abundant or low ribosome content, compared with the wild-type strain. The results indicate that ribosome maintenance is key for maintaining the ability of P. aeruginosa to resuscitate from starvation-induced dormancy and that HPF is the major factor associated with P. aeruginosa ribosome preservation.Item Screening of Additive Formulations Enables Off-Chip Drop Reverse Transcription Quantitative Polymerase Chain Reaction of Single Influenza A Virus Genomes(American Chemical Society, 2021-03) Loveday, Emma Kate; Zath, Geoffrey K.; Bikos, Dimitri A.; Jay, Zackary J.; Chang, Connie B.The miniaturization of polymerase chain reaction (PCR) using drop-based microfluidics allows for amplification of single nucleic acids in aqueous picoliter-sized drops. Accurate data collection during PCR requires that drops remain stable to coalescence during thermocycling and drop contents are retained. Following systematic testing of known PCR additives, we identified an optimized formulation of 1% w/v Tween-20, 0.8 μg/μL bovine serum albumin, 1 M betaine in the aqueous phase, and 3 wt % (w/w) of the polyethylene glycol-perfluoropolyether2 surfactant in the oil phase of 50 μm diameter drops that maintains drop stability and prevents dye transport. This formulation enables a method we call off-chip drop reverse transcription quantitative PCR (OCD RT-qPCR) in which drops are thermocycled in a qPCR machine and sampled at various cycle numbers “off-chip”, or outside of a microfluidic chip. qPCR amplification curves constructed from hundreds of individual drops using OCD RT-qPCR and imaged using epifluorescence microscopy correlate with amplification curves of ≈300,000 drops thermocycled using a qPCR machine. To demonstrate the utility of OCD RT-qPCR, influenza A virus (IAV) RNA was detected down to a single viral genome copy per drop, or 0.320 cpd. This work was extended to perform multiplexed detection of IAV M gene RNA and cellular β-actin DNA in drops, and direct amplification of IAV genomes from infected cells without a separate RNA extraction step. The optimized additive formulation and the OCD-qPCR method allow for drop-based RT-qPCR without complex devices and demonstrate the ability to quantify individual or rare nucleic acid species within drops with minimal processing.Item Screening of Additive Formulations Enables Off-Chip Drop Reverse Transcription Quantitative Polymerase Chain Reaction of Single Influenza A Virus Genomes(American Chemical Society, 2021-03) Loveday, Emma Kate; Zath, Geoffrey K.; Bikos, Dimitri A.; Jay, Zackary J.; Chang, Connie B.The miniaturization of polymerase chain reaction (PCR) using drop-based microfluidics allows for amplification of single nucleic acids in aqueous picoliter-sized drops. Accurate data collection during PCR requires that drops remain stable to coalescence during thermocycling and drop contents are retained. Following systematic testing of known PCR additives, we identified an optimized formulation of 1% w/v Tween-20, 0.8 μg/μL bovine serum albumin, 1 M betaine in the aqueous phase, and 3 wt % (w/w) of the polyethylene glycol-perfluoropolyether2 surfactant in the oil phase of 50 μm diameter drops that maintains drop stability and prevents dye transport. This formulation enables a method we call off-chip drop reverse transcription quantitative PCR (OCD RT-qPCR) in which drops are thermocycled in a qPCR machine and sampled at various cycle numbers “off-chip”, or outside of a microfluidic chip. qPCR amplification curves constructed from hundreds of individual drops using OCD RT-qPCR and imaged using epifluorescence microscopy correlate with amplification curves of ≈300,000 drops thermocycled using a qPCR machine. To demonstrate the utility of OCD RT-qPCR, influenza A virus (IAV) RNA was detected down to a single viral genome copy per drop, or 0.320 cpd. This work was extended to perform multiplexed detection of IAV M gene RNA and cellular β-actin DNA in drops, and direct amplification of IAV genomes from infected cells without a separate RNA extraction step. The optimized additive formulation and the OCD-qPCR method allow for drop-based RT-qPCR without complex devices and demonstrate the ability to quantify individual or rare nucleic acid species within drops with minimal processing.Item Single-Cell Infection of Influenza A Virus Using Drop-Based Microfluidics(American Society for Microbiology, 2022-10) Loveday, Emma Kate; Sanchez, Humberto S.; Thomas, Mallory M.; Chang, Connie B.Drop-based microfluidics has revolutionized single-cell studies and can be applied toward analyzing tens of thousands to millions of single cells and their products contained within picoliter-sized drops. Drop-based microfluidics can shed insight into single-cell virology, enabling higher-resolution analysis of cellular and viral heterogeneity during viral infection. In this work, individual A549, MDCK, and siat7e cells were infected with influenza A virus (IAV) and encapsulated into 100-μm-size drops. Initial studies of uninfected cells encapsulated in drops demonstrated high cell viability and drop stability. Cell viability of uninfected cells in the drops remained above 75%, and the average drop radii changed by less than 3% following cell encapsulation and incubation over 24 h. Infection parameters were analyzed over 24 h from individually infected cells in drops. The number of IAV viral genomes and infectious viruses released from A549 and MDCK cells in drops was not significantly different from bulk infection as measured by reverse transcriptase quantitative PCR (RT-qPCR) and plaque assay. The application of drop-based microfluidics in this work expands the capacity to propagate IAV viruses and perform high-throughput analyses of individually infected cells.