Browsing by Author "Christianson, Knut"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Biogeochemical Connectivity Between Freshwater Ecosystems beneath the West Antarctic Ice Sheet and the Sub‐Ice Marine Environment(2020-03) Vick‐Majors, Trista J.; Michaud, Alexander B.; Skidmore, Mark L.; Turetta, Clara; Barbante, Carlo; Christner, Brent C.; Dore, John E.; Christianson, Knut; Mitchell, Andrew C.; Achberger, Amanda M.; Mikucki, Jill A.; Priscu, John C.Although subglacial aquatic environments are widespread beneath the Antarctic ice sheet, subglacial biogeochemistry is not well understood, and the contribution of subglacial water to coastal ocean carbon and nutrient cycling remains poorly constrained. The Whillans Subglacial Lake (SLW) ecosystem is upstream from West Antarctica's Gould‐Siple Coast ~800 m beneath the surface of the Whillans Ice Stream. SLW hosts an active microbial ecosystem and is part of an active hydrological system that drains into the marine cavity beneath the adjacent Ross Ice Shelf. Here we examine sources and sinks for organic matter in the lake and estimate the freshwater carbon and nutrient delivery from discharges into the coastal embayment. Fluorescence‐based characterization of dissolved organic matter revealed microbially driven differences between sediment pore waters and lake water, with an increasing contribution from relict humic‐like dissolved organic matter with sediment depth. Mass balance calculations indicated that the pool of dissolved organic carbon in the SLW water column could be produced in 4.8 to 11.9 yr, which is a time frame similar to that of the lakes’ fill‐drain cycle. Based on these estimates, subglacial lake water discharged at the Siple Coast could supply an average of 5,400% more than the heterotrophic carbon demand within Siple Coast embayments (6.5% for the entire Ross Ice Shelf cavity). Our results suggest that subglacial discharge represents a heretofore unappreciated source of microbially processed dissolved organic carbon and other nutrients to the Southern Ocean.Item Grounding zone subglacial properties from calibrated active-source seismic methods(Copernicus GmbH, 2021-04) Horgan, Huw J.; van Haastrecht, Laurine; Alley, Richard B.; Anandakrishnan, Sridhar; Beem, Lucas H.; Christianson, Knut; Muto, Atsuhiro; Siegfried, Matthew R.The grounding zone of Whillans Ice Stream, West Antarctica, exhibits an abrupt transition in basal properties from the grounded ice to the ocean cavity over distances of less than 0.5–1 km. Active-source seismic methods reveal the downglacier-most grounded portion of the ice stream is underlain by a relatively stiff substrate (relatively high shear wave velocities of 1100±430 m s−1) compared to the deformable till found elsewhere beneath the ice stream. Changes in basal reflectivity in our study area cannot be explained by the stage of the tide. Several kilometres upstream of the grounding zone, layers of subglacial water are detected, as are regions that appear to be water layers but are less than the thickness resolvable by our technique. The presence of stiff subglacial sediment and thin water layers upstream of the grounding zone supports previous studies that have proposed the dewatering of sediment within the grounding zone and the trapping of subglacial water upstream of the ocean cavity. The setting enables calibration of our methodology using returns from the floating ice shelf. This allows a comparison of different techniques used to estimate the sizes of the seismic sources, a constraint essential for the accurate recovery of subglacial properties. We find a strong correlation (coefficient of determination=0.46) between our calibrated method and a commonly used multiple-bounce method, but our results also highlight the incomplete knowledge of other factors affecting the amplitude of seismic sources and reflections in the cryosphere.Item A microbial ecosystem beneath the West Antarctic ice sheet(Nature Publishing Group, 2014) Priscu, John C.; Christner, Brent C.; Achberger, Amanda M.; Barbante, Carlo; Carter, Sasha; Christianson, Knut; Michaud, Alexander B.Liquid water has been known to occur beneath the Antarctic ice sheet for more than 40 years1, but only recently have these subglacial aqueous environments been recognized as microbial ecosystems that may influence biogeochemical transformations on a global scale2, 3, 4. Here we present the first geomicrobiological description of water and surficial sediments obtained from direct sampling of a subglacial Antarctic lake. Subglacial Lake Whillans (SLW) lies beneath approximately 800 m of ice on the lower portion of the Whillans Ice Stream (WIS) in West Antarctica and is part of an extensive and evolving subglacial drainage network5. The water column of SLW contained metabolically active microorganisms and was derived primarily from glacial ice melt with solute sources from lithogenic weathering and a minor seawater component. Heterotrophic and autotrophic production data together with small subunit ribosomal RNA gene sequencing and biogeochemical data indicate that SLW is a chemosynthetically driven ecosystem inhabited by a diverse assemblage of bacteria and archaea. Our results confirm that aquatic environments beneath the Antarctic ice sheet support viable microbial ecosystems, corroborating previous reports suggesting that they contain globally relevant pools of carbon and microbes2, 4 that can mobilize elements from the lithosphere6 and influence Southern Ocean geochemical and biological systems7.