Browsing by Author "Cummins, G."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Effect of model selection on prediction of periodic behavior in gene regulatory networks(2012-08) Gedeon, Tomas; Cummins, G.; Heys, Jeffrey J.One of the current challenges for cell biology is understanding of the system level cellular behavior from the knowledge of a network of the individual subcellular agents. We address a question of how the model selection affects the predicted dynamic behavior of a gene network. In particular, for a fixed network structure, we compare protein-only models with models in which each transcriptional activation is represented both by mRNA and protein concentrations. We compare linear behavior near equilibria for both cyclic feedback systems and a general system. We show that, in general, explicit inclusion of the mRNA in the model weakens the stability of equilibria. We also study numerically dynamics of a particular gene network and show significant differences in global dynamics between the two types of models.Item Temporal coding in a nervous system(2011-05) Aldworth, Zane N.; Dimitrov, Alexander G.; Cummins, G.; Gedeon, Tomas; Miller, J. P.We examined the extent to which temporal encoding may be implemented by single neurons in the cercal sensory system of the house cricket Acheta domesticus. We found that these neurons exhibit a greater-than-expected coding capacity, due in part to an increased precision in brief patterns of action potentials. We developed linear and non-linear models for decoding the activity of these neurons. We found that the stimuli associated with short-interval patterns of spikes (ISIs of 8 ms or less) could be predicted better by second-order models as compared to linear models. Finally, we characterized the difference between these linear and second-order models in a low-dimensional subspace, and showed that modification of the linear models along only a few dimensions improved their predictive power to parity with the second order models. Together these results show that single neurons are capable of using temporal patterns of spikes as fundamental symbols in their neural code, and that they communicate specific stimulus distributions to subsequent neural structures.