Browsing by Author "Davies, David Gwilym"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Biofilms as complex differentiated communities(2002-10) Stoodley, Paul; Sauer, K.; Davies, David Gwilym; Costerton, J. WilliamProkaryotic biofilms that predominate in a diverse range of ecosystems are often composed of highly structured multispecies communities. Within these communities metabolic activities are integrated, and developmental sequences, not unlike those of multicellular organisms, can be detected. These structural applications and interrelationships are made possible by the expression of sets of genes that result in phenotypes that differ profoundly from those of planktonically grown cells of the same species. Molecular and microscopic evidence suggests the existence of a succession of de facto biofilm phenotypes. We submit that complex cell-cell interactions within prokaryotic communities are an ancient characteristic, the development of which was facilitated by the localization of cells at surfaces. In addition to spatial localization, surfaces may have provided the protective niche in which attached cells could create a localized homeostatic environment. In a holistic sense both biofilm and planktonic phenotypes may be viewed as integrated components of prokaryote life.Item The effect of attachment to granular activated carbon on the growth and physiology of Klebsiella oxytoca(Montana State University - Bozeman, College of Agriculture, 1987) Davies, David GwilymItem Exopolysaccharide production in biofilms: Substratum activation of alginate gene expression by Pseudomonas aeruginosa(1993-04) Davies, David Gwilym; Chakrabarty, Ananda M.; Geesey, Gill G.Reporter gene technology was employed to detect the activity of an alginate promoter of Pseudomonas aeruginosa when the organism was grown as a biofilm on a Teflon mesh substratum and as planktonic cells in liquid medium. Alginate biosynthetic activity was determined with a mucoid cell line derived from a cystic fibrosis isolate and containing an alginate algC promoter fused to a lacZ reporter gene. Reporter activity was demonstrated with chromogenic and fluorogenic substrates for 13-galactosidase. Expression of algC was shown to be upregulated in biofilm cells compared with planktonic cells in liquid medium. Gene up-expression correlated with alginate biosynthesis as measured by Fourier transform infrared spectroscopy, uronic acid accumulation, and alginate-specific enzyme-linked immunosorbent assay. The algC promoter was shown to have maximum activity in planktonic cultures during the late lag and early log phases of the cell growth cycle. During a time course experiment, biofilm algC activity exceeded planktonic activity except during the period immediately following inoculation into fresh medium. In continuous-culture experiments, conversion of lacZ substrate was demonstrated microscopically in individual cells by epifluorescence microscopy.Item The involvement of cell-to-cell signals in the development of a bacterial biofilm(1998-04) Davies, David Gwilym; Parsek, Matthew R.; Pearson, J.; Iglewski, Barbara H.; Costerton, J. William; Greenberg, E. P.Bacteria in nature often exist as sessile communities called biofilms. These communities develop structures that are morphologically and physiologically differentiated from free-living bacteria. A cell-to-cell signal is involved in the development of Pseudomonas aeruginosa biofilms. A specific signaling mutant, alasI mutant, forms flat, undifferentiated biofilms that unlike wild-type biofilms are sensitive to the biocide sodium dodecyl sulfate. Mutant biofilms appeared normal when grown in the presence of a synthetic signal molecule. The involvement of an intercellular signal molecule in the development of P. aeruginosa biofilms suggests possible targets to control biofilm growth on catheters, in cystic fibrosis, and in other environments where P. aeruginosa biofilms are a persistent problem.Item Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm(2002-02) Sauer, K.; Camper, Anne K.; Ehrlich, Garth D.; Costerton, J. William; Davies, David GwilymComplementary approaches were employed to characterize transitional episodes in Pseudomonas aeruginosa biofilm development using direct observation and whole-cell protein analysis. Microscopy and in situ reporter gene analysis were used to directly observe changes in biofilm physiology and to act as signposts to standardize protein collection for two-dimensional electrophoretic analysis and protein identification in chemostat and continuous-culture biofilm-grown populations. Using these approaches, we characterized five stages of biofilm development: (i) reversible attachment, (ii) irreversible attachment, (iii) maturation-1, (iv) maturation-2, and (v) dispersion. Biofilm cells were shown to change regulation of motility, alginate production, and quorum sensing during the process of development. The average difference in detectable protein regulation between each of the five stages of development was 35% (approximately 525 proteins). When planktonic cells were compared with maturation-2 stage biofilm cells, more than 800 proteins were shown to have a sixfold or greater change in expression level (over 50% of the proteome). This difference was higher than when planktonic P. aeruginosa were compared with planktonic cultures of Pseudomonas putida. Las quorum sensing was shown to play no role in early biofilm development but was important in later stages. Biofilm cells in the dispersion stage were more similar to planktonic bacteria than to maturation-2 stage bacteria. These results demonstrate that P. aeruginosa displays multiple phenotypes during biofilm development and that knowledge of stage-specific physiology may be important in detecting and controlling biofilm growth.Item Regulation of alginate biosynthesis in Pseudomonas aeruginosa biofilms(Montana State University - Bozeman, College of Agriculture, 1996) Davies, David GwilymItem Regulation of the alginate biosynthesis gene algc in Pseudomonas aeruginosa during biofilm development in continuous culture(1995-03) Davies, David Gwilym; Geesey, Gill G.Reporter gene technology was used to observe the regulation of the alginate biosynthesis gene, algC in a mucoid strain of Pseudomonas aeruginosa in developing and mature biofilms in continuous culture on Teflon and glass substrata. The plasmid pNZ63, carrying an algC-lacZ transcriptional fusion, was shown to not be diluted in continuous culture over a period of 25 days in the absence of selection pressure. Biofilm cells under bulk phase steady-state conditions demonstrated fluctuations in algC expression over a 16-day period, but no trend of increased or decreased expression over the time interval was indicated. In vivo detection of algC up-expression in developing biofilms was performed with a fluorogenic substrate for the plasmid-borne lacZ gene product (beta-galactosidase) by using microscopy coupled with image analysis. By this technique, cells were tracked over time and analyzed for algC activity. During the initial stages of biofilm development, cells already attached to a glass surface for at least 15 min exhibited up-expression of algC, detectable as the development of whole-cell fluorescence. However, initial cell attachment to the substratum appeared to be independent of algC promoter activity. Furthermore, cells not exhibiting algC up-expression were shown to be less capable of remaining at a glass surface under flowing conditions than were cells in which algC up-expression was detected.Item The use of signal molecules to manipulate the behavior of biofilm bacteria(1999) Davies, David Gwilym; Parsek, Matthew R.; Pearson, J.; Iglewski, Barbara H.; Costerton, J. William; Greenberg, E. P.