Browsing by Author "Davis, Kenneth J."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations(2006-07) Heinsch, Faith A.; Zhao, Maosheng; Running, Steven W.; Kimball, John S.; Nemani, Ramakrishna R.; Davis, Kenneth J.; Cook, Bruce D.; Desai, Ankur R.; Ricciuto, Daniel M.; Law, Beverly E.; Oechel, Walter C.; Kwon, Hyojung; Wofsy, Steven C.; Dunn, Allison L.; Munger, J. William; Baldocchi, Dennis D.; Xu, Liukang; Hollinger, David Y.; Richardson, Andrew D.; Stoy, Paul C.; Siqueira, Mario B. S.; Monson, Russell K.; Burns, Sean P.; Flanagan, Lawrence B.; Bolstad, Paul V.; Luo, HongyanThe Moderate Resolution Spectroradiometer (MODIS) sensor has provided near real-time estimates of gross primary production (GPP) since March 2000. We compare four years (2000 to 2003) of satellite-based calculations of GPP with tower eddy CO2 flux-based estimates across diverse land cover types and climate regimes. We examine the potential error contributions from meteorology, leaf area index (LAI)/fPAR, and land cover. The error between annual GPP computed from NASA's Data Assimilation Office's (DAO) and tower-based meteorology is 28%, indicating that NASA's DAO global meteorology plays an important role in the accuracy of the GPP algorithm. Approximately 62% of MOD15-based estimates of LAI were within the estimates based on field optical measurements, although remaining values overestimated site values. Land cover presented the fewest errors, with most errors within the forest classes, reducing potential error. Tower-based and MODIS estimates of annual GPP compare favorably for most biomes, although MODIS GPP overestimates tower-based calculations by 20%-30%. Seasonally, summer estimates of MODIS GPP are closest to tower data, and spring estimates are the worst, most likely the result of the relatively rapid onset of leaf-out. The results of this study indicate, however, that the current MODIS GPP algorithm shows reasonable spatial patterns and temporal variability across a diverse range of biomes and climate regimes. So, while continued efforts are needed to isolate particular problems in specific biomes, we are optimistic about the general quality of these data, and continuation of the MOD17 GPP product will likely provide a key component of global terrestrial ecosystem analysis, providing continuous weekly measurements of global vegetation productionItem A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes(2006-01) Richardson, Andrew D.; Hollinger, David Y.; Burba, George G.; Davis, Kenneth J.; Lawrence B., Flanagan; Katul, Gabriel G.; Munger, J. William; Ricciuto, Daniel M.; Stoy, Paul C.; Suyker, Andrew E.; Verma, Shashi B.; Wofsy, Steven C.Measured surface-atmosphere fluxes of energy (sensible heat, H, and latent heat, LE) and CO2 (FCO2) represent the “true” flux plus or minus potential random and systematic measurement errors. Here, we use data from seven sites in the AmeriFlux network, including five forested sites (two of which include “tall tower” instrumentation), one grassland site, and one agricultural site, to conduct a cross-site analysis of random flux error. Quantification of this uncertainty is a prerequisite to model-data synthesis (data assimilation) and for defining confidence intervals on annual sums of net ecosystem exchange or making statistically valid comparisons between measurements and model predictions. We differenced paired observations (separated by exactly 24 h, under similar environmental conditions) to infer the characteristics of the random error in measured fluxes. Random flux error more closely follows a double-exponential (Laplace), rather than a normal (Gaussian), distribution, and increase as a linear function of the magnitude of the flux for all three scalar fluxes. Across sites, variation in the random error follows consistent and robust patterns in relation to environmental variables. For example, seasonal differences in the random error for H are small, in contrast to both LE and FCO2, for which the random errors are roughly three-fold larger at the peak of the growing season compared to the dormant season. Random errors also generally scale with Rn (H and LE) and PPFD (FCO2). For FCO2 (but not H or LE), the random error decreases with increasing wind speed. Data from two sites suggest that FCO2 random error may be slightly smaller when a closed-path, rather than open-path, gas analyzer is used.Item Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms(2012-03-07) Niu, Shuli; Luo, Yiqi; Fei, Shenfeng; Yuan, Wenping; Schimel, David; Law, Beverly E.; Ammann, Christof; Arain, M. Altaf; Arneth, Almut; Aubinet, Marc; Barr, Alan G.; Beringer, Jason; Bernhofer, Christian; Black, T. Andrew; Buchmann, Nina; Cescatti, Alessandro; Chen, Jiquan; Davis, Kenneth J.; Dellwik, Ebba; Desai, Ankur R.; Etzold, Sophia; Francois, Louis; Gianelle, Damiano; Gielen, Bert; Goldstein, Allen; Groenendijk, Margriet; Gu, Lianhong; Hanan, Niall; Helfter, Carole; Hirano, Takashi; Hollinger, David Y.; Jones, Mike B.; Kiely, Gerard; Kolb, Thomas E.; Kutsch, Werner L.; Lafleur, Peter; Lawrence, David M.; Li, Linghao; Lindroth, Anders; Litvak, Marcy; Loustau, Denis; Lund, Magnus; Marek, Michal; Martin, Timothy A.; Matteucci, Giorgio; Migliavacca, Mirco; Montagnani, Leonardo; Moors, Eddy; Munger, J. William; Noormets, Asko; Oechel, Walter C.; Olejnik, Janusz; Pilegaard, Kim; Paw U, Kyaw Tha; Pilegaard, Kim; Rambal, Serge; Raschi, Antonio; Scott, Russell L.; Seufert, Günther; Spano, Donatella; Stoy, Paul C.; Sutton, Mark A.; Varlagin, Andrej; Vesala, Timo; Weng, Ensheng; Wohlfahrt, Georg; Yang, Bai; Zhang, Zhongda; Zhou, XuhuiIt is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. We found that the temperature response of NEE followed a peak curve, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum temperature) rather than changes in the temperature sensitivity of ecosystem respiration. Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably reflecting associated evolutionary adaptation of organisms within ecosystems, and has the potential to significantly regulate ecosystemclimate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models.