Browsing by Author "Dyer, Alan T."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Competition Between Fusarium pseudograminearum and Cochliobolus sativus Observed in Field and Greenhouse Studies(2018-02) Gunnink Troth, Erin; Johnston, Jeffrey; Dyer, Alan T.Among root pathogens, one of the most documented antagonisms is the suppression of Cochliobolus sativus by Fusarium (roseum) species. Unfortunately, previous studies involved single isolates of each pathogen and thus, provided no indication of the spectrum of responses that occur across the respective species. To investigate the variability in interactions between Cochliobolus sativus and Fusarium pseudograminearum, field and greenhouse trials were conducted that included monitoring of spring wheat plant health and monitoring of pathogen populations via quantitative real-time polymerase chain reaction. The interactions between two isolates of C. sativus and four isolates of F. pseudograminearum were explored in three geographically distinct wheat fields. To complement field trials and to limit potentially confounding environmental variables that are often associated with field studies, greenhouse trials were performed that investigated the interactions among and between three isolates of C. sativus and four isolates of F. pseudograminearum. Across field locations, C. sativus isolate Cs2344 consistently and significantly reduced Fusarium populations by an average of 20.1%. Similarly, F. pseudograminearum isolate Fp2228 consistently and significantly reduced C. sativus field populations by an average of 30.9%. No interaction was detected in the field between pathogen species with regards to disease or crop losses. Greenhouse results confirmed a powerful (>99%), broadly effective suppression of Fusarium populations by isolate Cs2344. Among greenhouse trials, additional isolate–isolate interactions were observed affecting Fusarium populations. Due to lower C. sativus population sizes in greenhouse trials, significant Fusarium suppression of C. sativus was only detected in one isolate–isolate interaction. This study is the first to demonstrate suppression of Fusarium spp. by C. sativus in field and greenhouse settings. These findings also reveal a complex competitive interaction between these two pathogen species that was previously unknown.Item Compositional profiling of the rhizosphere microbiome of Canada thistle reveals consistent patterns across the United States northern Great Plains(Springer Science and Business Media LLC, 2024) Eberly, Jed O.; Hurd, Asa; Oli, Dipiza; Dyer, Alan T.; Seipel, Tim F.; Carr, Patrick M.Canada thistle is a pervasive perennial weed, causing challenges to agricultural and natural ecosystems globally. Although research has focused on the phenology, genetics, and control of Canada thistle, little is known about the rhizosphere microbiome and the role plant–microbe interactions play in invasion success. This study investigated the rhizosphere microbiome of Canada thistle across diverse climates, soils, and crops in the U.S. northern Great Plains. Soil and rhizosphere samples were collected and bacterial 16S and fungal ITS2 sequencing were performed to characterize the core microbiome and identify potential factors contributing to invasion success. Amplicon sequencing revealed a stable core microbiome that was detected in the Canada thistle rhizosphere across all locations. The core microbiome was dominated by the bacterial phyla Actinobacteriota and Proteobacteria and fungal phyla Ascomycota and Basidiomycota. Differential abundance analysis showed rhizosphere fungal communities were enriched in pathogen-containing genera with a 1.7-fold greater abundance of Fusaria and a 2.6-fold greater abundance of Gibberella compared to bulk soil. Predictive functional profiling showed rhizosphere communities were enriched (p < 0.05, FDR corrected) in plant pathogen fungal guilds which represented 19% of the fungal community. The rhizosphere microbiome was similar in composition across environments, highlighting the stable association between Canada thistle and specific microbial taxa. This study characterized the core microbiome of Canada thistle, and the findings highlight plant–microbe interactions shaping invasive behavior. These findings are important for understanding the ecological impacts of plant invasion and soil-microbe ecological processes.Item Compositional profiling of the rhizosphere microbiome of Canada thistle reveals consistent patterns across the United States northern Great Plains(Springer Science and Business Media LLC, 2024-08) Eberly, Jed O.; Hurd, Asa; Oli, Dipiza; Dyer, Alan T.; Seipel, Tim F.; Carr, Patrick M.Canada thistle is a pervasive perennial weed, causing challenges to agricultural and natural ecosystems globally. Although research has focused on the phenology, genetics, and control of Canada thistle, little is known about the rhizosphere microbiome and the role plant–microbe interactions play in invasion success. This study investigated the rhizosphere microbiome of Canada thistle across diverse climates, soils, and crops in the U.S. northern Great Plains. Soil and rhizosphere samples were collected and bacterial 16S and fungal ITS2 sequencing were performed to characterize the core microbiome and identify potential factors contributing to invasion success. Amplicon sequencing revealed a stable core microbiome that was detected in the Canada thistle rhizosphere across all locations. The core microbiome was dominated by the bacterial phyla Actinobacteriota and Proteobacteria and fungal phyla Ascomycota and Basidiomycota. Differential abundance analysis showed rhizosphere fungal communities were enriched in pathogen-containing genera with a 1.7-fold greater abundance of Fusaria and a 2.6-fold greater abundance of Gibberella compared to bulk soil. Predictive functional profiling showed rhizosphere communities were enriched (p < 0.05, FDR corrected) in plant pathogen fungal guilds which represented 19% of the fungal community. The rhizosphere microbiome was similar in composition across environments, highlighting the stable association between Canada thistle and specific microbial taxa. This study characterized the core microbiome of Canada thistle, and the findings highlight plant–microbe interactions shaping invasive behavior. These findings are important for understanding the ecological impacts of plant invasion and soil-microbe ecological processes.