Browsing by Author "Ficklin, Darren L."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item The increasing importance of atmospheric demand for ecosystem water and carbon fluxes(2016-11) Novick, Kimberly A.; Ficklin, Darren L.; Stoy, Paul C.; Williams, Christopher A.; Bohrer, Gil; Oishi, A. Christopher; Papuga, Shirley A.; Blanken, Peter D.; Noormets, Asko; Sulman, Benjamin N.; Scott, Russell L.; Wang, Lixin; Phillips, Richard P.Soil moisture supply and atmospheric demand for water independently limit-and profoundly affect-vegetation productivity and water use during periods of hydrologic stress(1-4). Disentangling the impact of these two drivers on ecosystem carbon and water cycling is difficult because they are often correlated, and experimental tools for manipulating atmospheric demand in the field are lacking. Consequently, the role of atmospheric demand is often not adequately factored into experiments or represented in models(5-7). Here we show that atmospheric demand limits surface conductance and evapotranspiration to a greater extent than soil moisture in many biomes, including mesic forests that are of particular importance to the terrestrial carbon sink(8,9). Further, using projections from ten general circulation models, we show that climate change will increase the importance of atmospheric constraints to carbon and water fluxes in all ecosystems. Consequently, atmospheric demand will become increasingly important for vegetation function, accounting for >70% of growing season limitation to surface conductance in mesic temperate forests. Our results suggest that failure to consider the limiting role of atmospheric demand in experimental designs, simulation models and land management strategies will lead to incorrect projections of ecosystem responses to future climate conditions.Item The surface-atmosphere exchange of carbon dioxide in tropical rainforests: Sensitivity to environmental drivers and flux measurement methodology(2018-12) Fu, Zheng; Gerken, Tobias; Bromley, Gabriel T.; Araújo, Alessandro; Bonal, Damien; Burban, Benoit; Ficklin, Darren L.; Fuentes, Jose D.; Goulden, Michael L.; Hirano, Takashi; Kosugi, Yoshiko; Liddell, Michael; Nicolini, Giacomo; Niu, Shuli; Roupsard, Olivier; Stefani, Paolo; Mi, Chunrong; Tofte, Zaddy; Xiao, Jingfeng; Valentini, Riccardo; Wolf, Sebastian; Stoy, Paul C.Tropical rainforests play a central role in the Earth system by regulating climate, maintaining biodiversity, and sequestering carbon. They are under threat by direct anthropogenic impacts like deforestation and the indirect anthropogenic impacts of climate change. A synthesis of the factors that determine the net ecosystem exchange of carbon dioxide (NEE) at the site scale across different forests in the tropical rainforest biome has not been undertaken to date. Here, we study NEE and its components, gross ecosystem productivity (GEP) and ecosystem respiration (RE), across thirteen natural and managed forests within the tropical rainforest biome with 63 total site-years of eddy covariance data. Our results reveal that the five ecosystems with the largest annual gross carbon uptake by photosynthesis (i.e. GEP > 3000 g C m(-2) y(-1)) have the lowest net carbon uptake - or even carbon losses versus other study ecosystems because RE is of a similar magnitude. Sites that provided sub canopy CO2 storage observations had higher average magnitudes of GEP and RE and lower average magnitudes of NEE, highlighting the importance of measurement methodology for understanding carbon dynamics in ecosystems with characteristically tall and dense vegetation. A path analysis revealed that vapor pressure deficit (VPD) played a greater role than soil moisture or air temperature in constraining GEP under light saturated conditions across most study sites, but to differing degrees from -0.31 to -0.87 mu mol CO2 m(-2) s(-1) hPa(-1). Climate projections from 13 general circulation models (CMIP5) under the representative concentration pathway that generates 8.5 W m(-2) of radiative forcing suggest that many current tropical rainforest sites on the lower end of the current temperature range are likely to reach a climate space similar to present-day warmer sites by the year 2050, warmer sites will reach a climate not currently experienced, and all forests are likely to experience higher VPD. Results demonstrate the need to quantify if and how mature tropical trees acclimate to heat and water stress, and to further develop flux-partitioning and gap-filling algorithms for defensible estimates of carbon exchange in tropical rainforests.