Browsing by Author "Frederickson, Sara J."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Enhanced inflammation with high carbohydrate intake during recovery from eccentric exercise(Springer, 2010-08) Miles, Mary; Depner, Chris M.; Kirwan, Rochelle D.; Frederickson, Sara J.Inflammation associated with adipose tissue is modulated by macronutrient availability. For example, glucose increases inflammation in obese but not lean individuals. Little is known about how macronutrient intake influences inflammation associated with muscle. The aim of this study was to determine the impact of macronutrient intake differences during recovery from eccentric exercise on the inflammatory response. The study was a cross-over design in which young men and women (n = 12) completed high and low carbohydrate (CHO) conditions. Both conditions consisted of six sets of ten maximal high-force eccentric contractions of the elbow flexors and extensors followed by a controlled diet for the first 8 h post-exercise. Glucose, insulin, tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and C-reactive protein were measured from blood samples pre-exercise, 1.5, 4, 8, and 24 h post-exercise. Perceived muscle soreness, strength loss, and serum CK activity were measured through 120 h post-exercise. Perceived soreness was elevated (P < 0.001) at all time points post-exercise in both conditions and was higher (P < 0.05) in the high compared to the low CHO condition. IL-1β increased (P = 0.05) 24 h post-exercise in the high compared to the low CHO condition. There was a trend (P = 0.06) for IL-6 to be elevated in the high compared to the low CHO condition. We conclude that inflammation induced by high-force eccentric exercise in skeletal muscle is greater when a high CHO compared to a low CHO diet is consumed during recovery.Item Influence of macronutrient intake and anthropometric characteristics on plasma insulin after eccentric exercise(W.B. Saunders Co, 2010-10) Miles, Mary; Frederickson, Sara J.; Depner, Chris M.; Kirwan, Rochelle D.To increase understanding of the interaction between macronutrients and insulin resistance (IR), this study sought to determine the influence of macronutrient intake and anthropometric differences on IR and inflammation responses to eccentric resistance exercise. Men and women (n = 12, 19-36 years old) participated in a crossover study and completed 6 sets of 10 unilateral maximal eccentric contractions of the elbow flexors and extensors followed by controlled diet conditions for the first 8 hours postexercise of carbohydrate/fat/protein proportions of either 75%/15%/10% (CHO) or 6%/70%/24% (FAT/PRO). Fasting glucose, insulin, homeostatic model assessment (HOMA) variables, and interleukin (IL)-1β were measured preexercise and 23 hours postexercise (additional measures of glucose and insulin 1 hour after meals consumed 0.5, 3, and 7 hours postexercise). Insulin increased more (P < .01) in the CHO compared with the FAT/PRO condition at 1.5, 4, and 8 hours postexercise. Insulin, HOMA-IR, and HOMA-β-cell function increased 23 hours postexercise in both conditions, whereas IL-1β increased 23 hours postexercise only in the CHO condition. Magnitude of change (Δ) for these variables associated positively with body mass index (BMI) and waist to hip ratio (WHR) in the CHO and inversely in the FAT/PRO condition; that is, r = 0.53 (P = .10) and r = −0.82 (P < .01) for BMI vs Δ insulin in CHO and FAT/PRO conditions, respectively. The Δ IL-1β associated with BMI (r = 0.62, P < .05) and WHR (r = 0.84, P < .01) in the CHO condition. The CHO enhanced IR and inflammation as BMI and WHR increased, whereas fat and protein enhanced IR as BMI and WHR decreased. Thus, BMI and WHR may need to be taken into account in the development of nutritional strategies to prevent IR.Item Low-dose creatine supplementation enhances fatigue resistance in the absence of weight gain(Elsevier, 2011-04) Miles, Mary; Rawson, E.S.; Stech, M.J.; Frederickson, Sara J.Objective: We examined the effects of 6 wk of low-dose creatine supplementation on body composition, muscle function, and body creatine retention. Methods: Twenty healthy men and women (21 ± 2 y old) were randomized to receive creatine (0.03 g • kg -1 • d-1; n=10, 4 women) for 6 wk in a double-blind placebo-controlled fashion. Participants were tested on two occasions before supplementation to establish a reliable baseline, and then were retested after supplementation. Testing included body composition, maximal strength (three-repetition maximal concentric knee extension at 180 degrees/s), muscle fatigue (five sets of 30 concentric knee extensions at 180 degrees/s), and plasma creatine concentration. Results: There were no significant differences in body mass, fat-free mass, fat mass, body fat percentage, total body water, or maximal strength in either group from before to after supple-mentation (all P > 0.05). After supplementation, plasma creatine increased significantly in the creatine group (+182%, P = 0.03), with no difference in the placebo group. Compared with baseline values, creatine-supplemented volunteers were more resistant to fatigue during sets 2 (7%), 3 (9%), 4 (9%), and 5 (11%) (all P < 0.05). In placebo-supplemented participants, there was no improvement in fatigue resistance during sets 2 (0%), 3 (1%), 4 (0%), and 5 (1%) (all P > 0.05). Conclusion: Ingesting a low dose (2.3 g/d) of creatine for 6 wk significantly increased plasma creatine concentration and enhanced resistance to fatigue during repeated bouts of high-intensity contractions.