Browsing by Author "Goodheart, Benjamin Michael"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item African wild dog demography in an ecosystem with reduced prey and dominant competitors(Montana State University - Bozeman, College of Letters & Science, 2021) Goodheart, Benjamin Michael; Chairperson, Graduate Committee: Scott Creel; Scott Creel, Matthew S. Becker, Milan Vinks, Kambwiri Banda, Carolyn Sanguinetti, Paul Schuette, Elias Rosenblatt, Chase Dart, Anna Kusler, Kim Young-Overton, Xia Stevens, Alstone Mwanza and Chuma Simukonda were co-authors of the article, 'Low apex carnivore density does not release a subordinate competitor when driven by prey depletion' in the journal 'Biological conservation' which is contained within this thesis.Conservation of competitively subordinate carnivores presents a difficult challenge because they are limited by dominant competitors. Prey depletion is one of the leading causes of large carnivore decline worldwide, but little is known about the net effect of prey depletion on subordinate carnivores when their dominant competitors are also reduced. African wild dogs are often limited by high densities of dominant competitors, particularly lions. We measured African wild dog density and survival, using mark-recapture models fit to 8 years of data from 425 known individuals in the Greater Kafue Ecosystem, Zambia. The GKE is affected by prey depletion, particularly of large herbivores, and thus the density of lions is significantly lower than ecologically comparable ecosystems. Counter to expectations from mesopredator release theory, wild dog density in GKE was far lower than comparable ecosystems with higher lion and prey density, though annual survival rates were comparable to large and stable populations. Average pack size was small and home range size was among the largest recorded. Our results show that low lion density did not competitively release the GKE wild dog population and we infer that the low density of wild dogs was a product of low prey density. Our results suggest that there is an optimal ratio of prey and competitors at which wild dogs achieve their highest densities. This finding has immediate implications for the conservation of the endangered African wild dog, and broad implications for the conservation of subordinate species affected by resource depletion and intraguild competition.