Browsing by Author "Goossens, Dirk"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Health Effects from Exposure to Atmospheric Mineral Dust Near Las Vegas, NV, USA(2016-09) Keil, Deborah E.; Buck, Brenda; Goossens, Dirk; Teng, Yuanxin; Pollard, James; McLaurin, Brett; Gerads, Russell; DeWitt, Jamie C.Desert areas are usually characterized by a continuous deposition of fine airborne particles. Over time, this process results in the accumulation of silt and clay on desert surfaces. We evaluated health effects associated with regional atmospheric dust, or geogenic dust, deposited on surfaces in the Nellis Dunes Recreation Area (NDRA) in Clark County, Nevada, a popular off-road vehicle (ORV) recreational site frequented daily by riders, families, and day campers. Because of atmospheric mixing and the mostly regional origin of the accumulated particles, the re-suspended airborne dust is composed of a complex mixture of minerals and metals including aluminum, vanadium, chromium, manganese, iron, cobalt, copper, zinc, arsenic, strontium, cesium, lead, uranium, and others. Geogenic dust with a median diameter of 4.1 μm was administered via oropharyngeal aspiration to female B6C3F1 mice at doses of 0.01 to 100 mg dust/kg body weight, four times, a week apart, for 28-days. Immuno- and neurotoxicological outcomes 24 h following the last exposure were evaluated. Antigen-specific IgM responses were dose-responsively suppressed at 0.1, 1.0, 10 and 100 mg/kg/day. Splenic and thymic lymphocytic subpopulations and natural killer cell activity also were significantly reduced. Antibodies against MBP, NF-68, and GFAP were not affected, while brain CD3+ T cells were decreased in number. A lowest observed adverse effect level (LOAEL) of 0.1 mg/kg/day and a no observed adverse effect level (NOAEL) of 0.01 mg/kg/day were derived based on the antigen-specific IgM responses.Item Immunotoxicological and neurotoxicological profile of health effects following subacute exposure to geogenic dust from sand dunes at the Nellis Dunes Recreation Area, Las Vegas, NV(2016-01) Keil, Deborah E.; Buck, Brenda; Goossens, Dirk; Teng, Yuanxin; Leetham, M.; Murphy, Lacey M.; Pollard, James; Eggers, Margaret J.; McLaurin, Brett; Gerads, Russell; DeWitt, Jamie C.Exposure to geogenic particulate matter (PM) comprised of mineral particles has been linked to human health effects. However, very little data exist on health effects associated with geogenic dust exposure in natural settings. Therefore, we characterized particulate matter size, metal chemistry, and health effects of dust collected from the Nellis Dunes Recreation Area (NDRA), a popular off-road vehicle area located near Las Vegas, NV. Adult female B6C3F1 mice were exposed to several concentrations of mineral dust collected from active and vegetated sand dunes in NDRA. Dust samples (median diameter: 4.4 μm) were suspended in phosphate-buffered saline and delivered at concentrations ranging from 0.01 to 100 mg dust/kg body weight by oropharyngeal aspiration. ICP-MS analyses of total dissolution of the dust resulted in aluminum (55,090 μg/g), vanadium (70 μg/g), chromium (33 μg/g), manganese (511 μg/g), iron (21,600 μg/g), cobalt (9.4 μg/g), copper (69 μg/g), zinc (79 μg/g), arsenic (62 μg/g), strontium (620 μg/g), cesium (13 μg/g), lead 25 μg/g) and uranium (4.7 μg/g). Arsenic was present only as As(V). Mice received four exposures, once/week over 28-days to mimic a month of weekend exposures. Descriptive and functional assays to assess immunotoxicity and neurotoxicity were performed 24 h after the final exposure. The primary observation was that 0.1 to 100 mg/kg of this sand dune derived dust dose-responsively reduced antigen-specific IgM antibody responses, suggesting that dust from this area of NDRA may present a potential health risk.Item Nevada Dust with Metals suppresses IgM antibodies(2018) Keil, Deborah E.; Buck, Brenda; Goossens, Dirk; McLaurin, Brett; Murphy, Lacey M.; Leetham-Spencer, Mallory; Teng, Yuanxin; Pollard, James; Gerads, Russell; DeWitt, Jamie C.Systemic health effects from exposure to a complex natural dust containing heavy metalsfrom the Nellis Dunes Recreation Area (NDRA) near Las Vegas, NV, were evaluated. Several toxicological parameters were examined following lung exposure to emissive dust from three geologic sediment types heavily used for recreational off-road activities: yellow sand very rich in arsenic (termed CBN 5); a shallow cover of loose dune sand overlying a gravelly subsoil bordering dune fields (termed CBN 6); and brown claystone and siltstone(termed CBN 7). Adult female B6C3F1 mice were exposed by oropharyngeal administration to these three types of geogenic dusts at 0.01–100 mg of dust/kg of body weight, once per week for four weeks. The median grain sizes were 4.6, 3.1, and 4.4 μm, for CBN 5, 6, and 7, respectively. Each type of dust contained quantifiable amounts of aluminum, vanadium, chromium, manganese, iron, cobalt, copper, zinc, arsenic, strontium, cesium, lead, uranium, and others. Descriptive markers of immunotoxicity, neurotoxicity, hematology, and clinical chemistry parameters were assessed. Notable among all three CBN units was a systemic, dose-responsive decrease in antigen-specific IgM antibody responses. Geogenic dust from CBN 5 produced more than a 70% suppression in IgM responses, establishing a lowest adverse effect level (LOAEL) of 0.01 mg/kg. A suppression in IgM responses and a corresponding increase in serum creatinine determined a LOAEL of 0.01 mg/kg for CBN 6. The LOAEL for CBN 7 was 0.1 mg/kg and also was identified from suppression in IgM responses. These results are of concern given the frequent off-road vehicle traffic and high visitor rates at the NDRA, estimated at 300,000 each year.