Browsing by Author "Goulden, Michael L."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration(2010-02) Hollinger, David Y.; Ollinger, S. V.; Richardson, Andrew D.; Meyers, T. P.; Dail, D. B.; Martin, M. E.; Scott, N. A.; Arkebauer, T. J.; Baldocchi, Dennis D.; Clark, K. L.; Curtis, P. S.; Desai, Ankur R.; Dragoni, Danilo; Goulden, Michael L.; Gu, Lianhong; Katul, Gabriel G.; Pallardy, S. G.; Paw U, Kyaw Tha; Schmid, H. P.; Stoy, Paul C.; Suyker, Andrew E.; Verma, Shashi B.Vegetation albedo is a critical component of the Earth's climate system, yet efforts to evaluate and improve albedo parameterizations in climate models have lagged relative to other aspects of model development. Here, we calculated growing season albedos for deciduous and evergreen forests, crops, and grasslands based on over 40 site‐years of data from the AmeriFlux network and compared them with estimates presently used in the land surface formulations of a variety of climate models. Generally, the albedo estimates used in land surface models agreed well with this data compilation. However, a variety of models using fixed seasonal estimates of albedo overestimated the growing season albedo of northerly evergreen trees. In contrast, climate models that rely on a common two‐stream albedo submodel provided accurate predictions of boreal needle‐leaf evergreen albedo but overestimated grassland albedos. Inverse analysis showed that parameters of the two‐stream model were highly correlated. Consistent with recent observations based on remotely sensed albedo, the AmeriFlux dataset demonstrated a tight linear relationship between canopy albedo and foliage nitrogen concentration (for forest vegetation: albedo=0.01+0.071%N, r2=0.91; forests, grassland, and maize: albedo=0.02+0.067%N, r2=0.80). However, this relationship saturated at the higher nitrogen concentrations displayed by soybean foliage. We developed similar relationships between a foliar parameter used in the two‐stream albedo model and foliage nitrogen concentration. These nitrogen‐based relationships can serve as the basis for a new approach to land surface albedo modeling that simplifies albedo estimation while providing a link to other important ecosystem processes.Item Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes(2007-04) Yuan, Wenping; Liu, Shuguang; Zhou, Guangsheng; Zhou, Guoyi; Tieszen, Larry L.; Baldocchi, Dennis D.; Bernhofer, Christian; Gholz, Henry; Goldstein, Allen H.; Goulden, Michael L.; Hollinger, David Y.; Hu, Yueming; Law, Beverly E.; Stoy, Paul C.; Vesala, Timo; Wofsy, Steven C.The quantitative simulation of gross primary production (GPP) at various spatial and temporal scales has been a major challenge in quantifying the global carbon cycle. We developed a light use efficiency (LUE) daily GPP model from eddy covariance (EC) measurements. The model, called EC-LUE, is driven by only four variables: normalized difference vegetation index (NDVI), photosynthetically active radiation (PAR), air temperature, and the Bowen ratio of sensible to latent heat flux (used to calculate moisture stress). The EC-LUE model relies on two assumptions: First, that the fraction of absorbed PAR (fPAR) is a linear function of NDVI; Second, that the realized light use efficiency, calculated from a biome-independent invariant potential LUE, is controlled by air temperature or soil moisture, whichever is most limiting. The EC-LUE model was calibrated and validated using 24,349 daily GPP estimates derived from 28 eddy covariance flux towers from the AmeriFlux and EuroFlux networks, covering a variety of forests, grasslands and savannas. The model explained 85% and 77% of the observed variations of daily GPP for all the calibration and validation sites, respectively. A comparison with GPP calculated from the Moderate Resolution Imaging Spectroradiometer (MODIS) indicated that the EC-LUE model predicted GPP that better matched tower data across these sites. The realized LUE was predominantly controlled by moisture conditions throughout the growing season, and controlled by temperature only at the beginning and end of the growing season. The EC-LUE model is an alternative approach that makes it possible to map daily GPP over large areas because (1) the potential LUE is invariant across various land cover types and (2) all driving forces of the model can be derived from remote sensing data or existing climate observation networks.Item The surface-atmosphere exchange of carbon dioxide in tropical rainforests: Sensitivity to environmental drivers and flux measurement methodology(2018-12) Fu, Zheng; Gerken, Tobias; Bromley, Gabriel T.; Araújo, Alessandro; Bonal, Damien; Burban, Benoit; Ficklin, Darren L.; Fuentes, Jose D.; Goulden, Michael L.; Hirano, Takashi; Kosugi, Yoshiko; Liddell, Michael; Nicolini, Giacomo; Niu, Shuli; Roupsard, Olivier; Stefani, Paolo; Mi, Chunrong; Tofte, Zaddy; Xiao, Jingfeng; Valentini, Riccardo; Wolf, Sebastian; Stoy, Paul C.Tropical rainforests play a central role in the Earth system by regulating climate, maintaining biodiversity, and sequestering carbon. They are under threat by direct anthropogenic impacts like deforestation and the indirect anthropogenic impacts of climate change. A synthesis of the factors that determine the net ecosystem exchange of carbon dioxide (NEE) at the site scale across different forests in the tropical rainforest biome has not been undertaken to date. Here, we study NEE and its components, gross ecosystem productivity (GEP) and ecosystem respiration (RE), across thirteen natural and managed forests within the tropical rainforest biome with 63 total site-years of eddy covariance data. Our results reveal that the five ecosystems with the largest annual gross carbon uptake by photosynthesis (i.e. GEP > 3000 g C m(-2) y(-1)) have the lowest net carbon uptake - or even carbon losses versus other study ecosystems because RE is of a similar magnitude. Sites that provided sub canopy CO2 storage observations had higher average magnitudes of GEP and RE and lower average magnitudes of NEE, highlighting the importance of measurement methodology for understanding carbon dynamics in ecosystems with characteristically tall and dense vegetation. A path analysis revealed that vapor pressure deficit (VPD) played a greater role than soil moisture or air temperature in constraining GEP under light saturated conditions across most study sites, but to differing degrees from -0.31 to -0.87 mu mol CO2 m(-2) s(-1) hPa(-1). Climate projections from 13 general circulation models (CMIP5) under the representative concentration pathway that generates 8.5 W m(-2) of radiative forcing suggest that many current tropical rainforest sites on the lower end of the current temperature range are likely to reach a climate space similar to present-day warmer sites by the year 2050, warmer sites will reach a climate not currently experienced, and all forests are likely to experience higher VPD. Results demonstrate the need to quantify if and how mature tropical trees acclimate to heat and water stress, and to further develop flux-partitioning and gap-filling algorithms for defensible estimates of carbon exchange in tropical rainforests.