Browsing by Author "Gregory, Andrew J."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Fine-scale distribution modeling of avian malaria vectors in north-central Kansas.(2016-06) Ganser, Claudia; Gregory, Andrew J.; McNew, Lance B.; Hunt, Lyla A.; Sandercock, Brett K.; Wisely, Samantha M.Infectious diseases increasingly play a role in the decline of wildlife populations. Vector-borne diseases, in particular, have been implicated in mass mortality events and localized population declines are threatening some species with extinction. Transmission patterns for vector-borne diseases are influenced by the spatial distribution of vectors and are therefore not uniform across the landscape. Avian malaria is a globally distributed vector-borne disease that has been shown to affect endemic bird populations of North America. We evaluated shared habitat use between avian malaria vectors, mosquitoes in the genus Culex and a native grassland bird, the Greater Prairie-Chicken (Tympanuchus cupido), by (1) modeling the distribution of Culex spp. occurrence across the Smoky Hills of north-central Kansas using detection data and habitat variables, (2) assessing the occurrence of these vectors at nests of female Greater Prairie-Chickens, and (3) evaluating if shared habitat use between vectors and hosts is correlated with malarial infection status of the Greater Prairie-Chicken. Our results indicate that Culex occurrence increased at nest locations compared to other available but unoccupied grassland habitats; however the shared habitat use between vectors and hosts did not result in an increased prevalence of malarial parasites in Greater Prairie-Chickens that occupied habitats with high vector occurrence. We developed a predictive map to illustrate the associations between Culex occurrence and infection status with malarial parasites in an obligate grassland bird that may be used to guide management decisions to limit the spread of vector-borne diseases.Item Responses of male Greater Prairie-Chickens to wind energy development(2015-05) Winder, Virginia L.; Gregory, Andrew J.; McNew, Lance B.; Sandercock, Brett K.Renewable energy resources have received increased attention because of impacts of fossil fuels on global climate change. In Kansas, USA, optimal sites for wind energy development often overlap with preferred habitats of the Greater Prairie-Chicken (Tympanuchus cupido), a lek-mating prairie grouse of conservation concern. We tested for potential effects of energy development on male Greater Prairie-Chickens in north-central Kansas. We captured males at 23 leks located 0.04 to 28 km from wind turbines during a 2-yr preconstruction period (2007–2008) and a 3-yr postconstruction period (2009–2011). First, we tested for effects of proximity to turbines, habitat, and lek size on annual probability of lek persistence and changes in male numbers. We predicted that energy development might result in behavioral avoidance of areas close to turbines, resulting in increased rates of lek abandonment and fewer males attending surviving leks. We found that distance to turbine had a negative effect on lek persistence for leks <8 km from turbines during the postconstruction period, supporting the 8-km buffer zone recommended by the U.S. Fish and Wildlife Service as an offset for wind energy projects. Additionally, lek persistence was positively related to number of males counted at a lek and with grassland cover surrounding the lek. Second, we tested for effects of wind energy development on male body mass. We predicted that degraded habitat conditions might result in decreased body mass for males attending leks near turbines during the postconstruction period. Male body mass was ~2% lower during the postconstruction period, but distance to turbine did not affect body mass. Additional study is needed to determine whether short-term effects of turbines on lek persistence influence population viability of Greater Prairie-Chickens.