Browsing by Author "Gurley, Emily S."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Ecology, evolution and spillover of coronaviruses from bats(Springer Science and Business Media LLC, 2021-11) Ruiz-Aravena, Manuel; McKee, Clifton; Gamble, Amandine; Lunn, Tamika; Morris, Aaron; Snedden, Celine E.; Yinda, Claude Kwe; Port, Julia R.; Buchholz, David W.; Yeo, Yao Yu; Faust, Christina; Jax, Elinor; Dee, Lauren; Jones, Devin N.; Kessler, Maureen K.; Falvo, Caylee A.; Crowley, Daniel; Bharti, Nita; Brook, Cara E.; Aguilar, Hector C.; Peel, Alison J.; Restif, Olivier; Schountz, Tony; Parrish, Colin R.; Gurley, Emily S.; Lloyd-Smith, James O.; Hudson, Peter J.; Munster, Vincent J.; Plowright, Raina K.In the past two decades, three coronaviruses with ancestral origins in bats have emerged and caused widespread outbreaks in humans, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the first SARS epidemic in 2002–2003, the appreciation of bats as key hosts of zoonotic coronaviruses has advanced rapidly. More than 4,000 coronavirus sequences from 14 bat families have been identified, yet the true diversity of bat coronaviruses is probably much greater. Given that bats are the likely evolutionary source for several human coronaviruses, including strains that cause mild upper respiratory tract disease, their role in historic and future pandemics requires ongoing investigation. We review and integrate information on bat–coronavirus interactions at the molecular, tissue, host and population levels. We identify critical gaps in knowledge of bat coronaviruses, which relate to spillover and pandemic risk, including the pathways to zoonotic spillover, the infection dynamics within bat reservoir hosts, the role of prior adaptation in intermediate hosts for zoonotic transmission and the viral genotypes or traits that predict zoonotic capacity and pandemic potential. Filling these knowledge gaps may help prevent the next pandemic.Item Prioritizing surveillance of Nipah virus in India(2019-06) Plowright, Raina K.; Becker, Daniel J.; Crowley, Daniel E.; Washburne, Alex D.; Huang, Tao; Nameer, P. O.; Gurley, Emily S.; Han, Barbara A.The 2018 outbreak of Nipah virus in Kerala, India, highlights the need for global surveillance of henipaviruses in bats, which are the reservoir hosts for this and other viruses. Nipah virus, an emerging paramyxovirus in the genus Henipavirus, causes severe disease and stuttering chains of transmission in humans and is considered a potential pandemic threat. In May 2018, an outbreak of Nipah virus began in Kerala, > 1800 km from the sites of previous outbreaks in eastern India in 2001 and 2007. Twenty-three people were infected and 21 people died (16 deaths and 18 cases were laboratory confirmed). Initial surveillance focused on insectivorous bats (Megaderma spasma), whereas follow-up surveys within Kerala found evidence of Nipah virus in fruit bats (Pteropus medius). P. medius is the confirmed host in Bangladesh and is now a confirmed host in India. However, other bat species may also serve as reservoir hosts of henipaviruses. To inform surveillance of Nipah virus in bats, we reviewed and analyzed the published records of Nipah virus surveillance globally. We applied a trait-based machine learning approach to a subset of species that occur in Asia, Australia, and Oceana. In addition to seven species in Kerala that were previously identified as Nipah virus seropositive, we identified at least four bat species that, on the basis of trait similarity with known Nipah virus-seropositive species, have a relatively high likelihood of exposure to Nipah or Nipah-like viruses in India. These machine-learning approaches provide the first step in the sequence of studies required to assess the risk of Nipah virus spillover in India. Nipah virus surveillance not only within Kerala but also elsewhere in India would benefit from a research pipeline that included surveys of known and predicted reservoirs for serological evidence of past infection with Nipah virus (or cross reacting henipaviruses). Serosurveys should then be followed by longitudinal spatial and temporal studies to detect shedding and isolate virus from species with evidence of infection. Ecological studies will then be required to understand the dynamics governing prevalence and shedding in bats and the contacts that could pose a risk to public health.