Browsing by Author "Halverson, L."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Carbon partitioning in lipids synthesized by Chlamydomonas reinhardtii when cultured under three unique inorganic carbon regimes(2014-07) Lohman, Egan J.; Gardner, Robert D.; Halverson, L.; Peyton, Brent M.; Gerlach, RobinInorganic carbon is a fundamental component for microalgal lipid biosynthesis. Understanding how the concentration and speciation of dissolved inorganic carbon (DIC) influences lipid metabolism in microalgae may help researchers optimize the production of these high value metabolites. Using relatively straight forward methods for quantifying free fatty acids (FFAs), mono- (MAG), di- (DAG), tri-acylglycerides (TAG), and total cellular fatty acids (FAME), lipid profiles over time were established for Chlamydomonas reinhardtii when grown under three unique inorganic carbon regimes. Specifically, cultures sparged with atmospheric air were compared to cultures which were sparged with 5% CO2 (v/v) and cultures supplemented with 50 mM NaHCO3 just prior to medium nitrogen depletion. All three conditions exhibited similar lipid profiles prior to nitrogen depletion in the medium, with FFA and MAG being the predominant lipid metabolites. However, these precursors were quickly reallocated into DAG and subsequently TAG after nitrogen depletion. C16 DAG did not accumulate significantly in any of the treatments, whereas the C18 DAG content increased throughout both exponential growth and stationary phase. C16 and C18 TAG began to accumulate after nitrogen depletion, with C16 TAG contributing the most to overall TAG content. C16 fatty acids exhibited a shift towards saturated C16 fatty acids after nitrogen depletion. Results provide insight into inorganic carbon partitioning into lipid compounds and how the organism's lipid metabolism changes due to N-deplete culturing and inorganic carbon source availability. The methodologies and findings presented here may be adapted to other organisms with high industrial relevance.Item An efficient and scalable extraction and quantification method for algal derived biofuel(2013-09) Lohman, Egan J.; Gardner, Robert D.; Halverson, L.; Macur, Richard E.; Peyton, Brent M.; Gerlach, RobinMicroalgae are capable of synthesizing a multitude of compounds including biofuel precursors and other high value products such as omega-3-fatty acids. However, accurate analysis of the specific compounds produced by microalgae is important since slight variations in saturation and carbon chain length can affect the quality, and thus the value, of the end product. We present a method that allows for fast and reliable extraction of lipids and similar compounds from a range of algae, followed by their characterization using gas chromatographic analysis with a focus on biodiesel-relevant compounds. This method determines which range of biologically synthesized compounds is likely responsible for each fatty acid methyl ester (FAME) produced; information that is fundamental for identifying preferred microalgae candidates as a biodiesel source. Traditional methods of analyzing these precursor molecules are time intensive and prone to high degrees of variation between species and experimental conditions. Here we detail a new method which uses microwave energy as a reliable, single-step cell disruption technique to extract lipids fromlive cultures of microalgae. After extractable lipid characterization (including lipid type (free fatty acids, mono-, di- or tri-acylglycerides) and carbon chain length determination) by GC–FID, the same lipid extracts are transesterified into FAMEs and directly compared to total biodiesel potential by GC–MS. This approach provides insight into the fraction of total FAMEs derived from extractable lipids compared to FAMEs derived fromthe residual fraction (i.e. membrane bound phospholipids, sterols, etc.). This approach can also indicate which extractable lipid compound, based on chain length and relative abundance, is responsible for each FAME. This method was tested on three species of microalgae: the marine diatom Phaeodactylum tricornutum, the model Chlorophyte Chlamydomonas reinhardtii, and the freshwater green alga Chlorella vulgaris. The method is shown to be robust, highly reproducible, and fast, allowing for multiple samples to be analyzed throughout the time course of culturing, thus providing time-resolved information regarding lipid quantity and quality. Total time from harvesting to obtaining analytical results is less than 2 h.