Browsing by Author "Hinchen, Daniel J."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Enabling microbial syringol conversion through structure-guided protein engineering(2019-07-19) Machovina, Melodie M.; Mallinson, Sam J. B.; Knott, Brandon C.; Meyers, Alexander W.; Garcia-Borras, Marc; Bu, Lintao; Gado, Japheth E.; Oliver, April; Schmidt, Graham P.; Hinchen, Daniel J.; Crowley, Michael F.; Johnson, Christopher W.; Neidle, Ellen L.; Payne, Christina M.; Houk, Kendall N.; Beckham, Gregg T.; McGeehan, John E.; DuBois, Jennifer L.Microbial conversion of aromatic compounds is an emerging and promising strategy for valorization of the plant biopolymer lignin. A critical and often rate-limiting reaction in aromatic catabolism is O-aryl-demethylation of the abundant aromatic methoxy groups in lignin to form diols, which enables subsequent oxidative aromatic ring-opening. Recently, a cytochrome P450 system, GcoAB, was discovered to demethylate guaiacol (2-methoxyphenol), which can be produced from coniferyl alcohol-derived lignin, to form catechol. However, native GcoAB has minimal ability to demethylate syringol (2,6-dimethoxyphenol), the analogous compound that can be produced from sinapyl alcohol-derived lignin. Despite the abundance of sinapyl alcohol-based lignin in plants, no pathway for syringol catabolism has been reported to date. Here we used structure-guided protein engineering to enable microbial syringol utilization with GcoAB. Specifically, a phenylalanine residue (GcoA-F169) interferes with the binding of syringol in the active site, and on mutation to smaller amino acids, efficient syringol O-demethylation is achieved. Crystallography indicates that syringol adopts a productive binding pose in the variant, which molecular dynamics simulations trace to the elimination of steric clash between the highly flexible side chain of GcoA-F169 and the additional methoxy group of syringol. Finally, we demonstrate in vivo syringol turnover in Pseudomonas putida KT2440 with the GcoA-F169A variant. Taken together, our findings highlight the significant potential and plasticity of cytochrome P450 aromatic O-demethylases in the biological conversion of lignin-derived aromatic compounds.Item Engineering a Cytochrome P450 for Demethylation of Lignin-Derived Aromatic Aldehydes(American Chemical Society, 2021-03) Ellis, Emerald S.; Hinchen, Daniel J.; Bleem, Alissa; Bu, Lintao; Mallinson, Sam J. B.; Allen, Mark D.; Streit, Bennett R.; Machovina, Melodie M.; Doolin, Quinlan V.; Michener, William E.; Johnson, Christopher W.; Knott, Brandon C.; Beckham, Gregg T.; McGeehan, John E.; DuBois, Jennifer L.Biological funneling of lignin-derived aromatic compounds is a promising approach for valorizing its catalytic depolymerization products. Industrial processes for aromatic bioconversion will require efficient enzymes for key reactions, including demethylation of O-methoxy-aryl groups, an essential and often rate-limiting step. The recently characterized GcoAB cytochrome P450 system comprises a coupled monoxygenase (GcoA) and reductase (GcoB) that catalyzes oxidative demethylation of the O-methoxy-aryl group in guaiacol. Here, we evaluate a series of engineered GcoA variants for their ability to demethylate o-and p-vanillin, which are abundant lignin depolymerization products. Two rationally designed, single amino acid substitutions, F169S and T296S, are required to convert GcoA into an efficient catalyst toward the o- and p-isomers of vanillin, respectively. Gain-of-function in each case is explained in light of an extensive series of enzyme-ligand structures, kinetic data, and molecular dynamics simulations. Using strains of Pseudomonas putida KT2440 already optimized for p-vanillin production from ferulate, we demonstrate demethylation by the T296S variant in vivo. This work expands the known aromatic O-demethylation capacity of cytochrome P450 enzymes toward important lignin-derived aromatic monomers.