Browsing by Author "Lee, H.-Y."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Dielectric properties in lead-free piezoelectric (Bi0.5Na0.5)TiO3-BaTiO3 single crystals and ceramics(2014) Chen, Cheng-Sao; Tu, Chi-Shun; Chen, Pin-Yi; Ting, Yi; Chiu, S.-J.; Hung, C.-M.; Lee, H.-Y.; Wang, S.-F.; Anthoninappen, J.; Schmidt, V. Hugo; Chien, R. R.The 0.93(Bi0.5Na0.5)TiO3–0.07BaTiO3 (BNB7T) piezoelectric single crystals and ceramics have been grown respectively by using the self-flux and solid-state-reaction methods. The real (ε′) and imaginary (ε″) parts of the dielectric permittivity of BNB7T crystals and ceramics were investigated with and without an electric (E) poling as functions of temperature and frequency. The BNB7T crystal shows a stronger dielectric maximum at Tm~240 °C than the ceramic at Tm~300 °C. The dielectric permittivity of BNB7T ceramic shows an extra peak after poling at an electric field E=40 kV/cm in the region of 80–100 °C designated as the depolarization temperature (Td). A wide-range dielectric thermal hysteresis was observed in BNB7T crystal and ceramic, suggesting a first-order-like phase transition. The dielectric permittivity ε′ obeys the Curie–Weiss equation, ε′=C/(T−To), above 500 °C, which is considered as the Burns temperature (TB), below which polar nanoregions begin to develop and attenuate dielectric responses.Item Phase coexistence and Mn-doping effect in lead-free ferroelectric (Na1/2Bi1/2)TiO3 crystals(2010) Tu, Chi-Shun; Huang, S.-H.; Ku, C. -S.; Lee, H.-Y.; Chien, R.R.; Schmidt, V. Hugo; Luo, H.Phase transformations of (001)-cut (Na1/2Bi1/2)TiO3 (NBT) and 1 at. % Mn-doped NBT (Mn-NBT) crystals have been investigated by means of dielectric permittivity, conventional x-ray diffraction (XRD), and high-resolution synchrotron XRD and reciprocal space mapping. An R−R+T−T−C transition sequence was observed in NBT and Mn-NBT upon zero-field heating. R, T, and C are rhombohedral, tetragonal, and cubic phases, respectively. R+T represents that the ferroelastic T phase coexists with the ferroelectric R phase. The Mn dopant can enhance dielectric response and reduce the dielectric loss in the high-temperature region due to the increased degree of ordering.Item Poling effect and piezoelectric response in high-strain ferroelectric 0.70Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 crystal(2010) Chen, H.-Y.; Tu, Chi-Shun; Hung, C.-M.; Chien, R.R.; Schmidt, V. Hugo; Ku, C. -S.; Lee, H.-Y.In situ high-resolution synchrotron x-ray diffraction, dielectric permittivity, hysteresis loop, and polarization current, were used to investigate phase transitions of (211)-cut 0.70Pb(Mg1/3Nb2/3)O3–0.30PbTiO30.70Pb(Mg1/3Nb2/3)O3–0.30PbTiO3 single crystal before and after an electric (E)(E) field poling. A rhombohedral (R)–tetragonal (T)–cubic transition sequence was observed upon zero-field heating in both unpoled and poled samples. Before the R–T transition takes place, an extra dielectric and polarization current anomalies near 365 K were observed in the poled sample due to a transition of polarization ordering. The direct piezoelectric coefficient d33d33 exhibits a rapid increase for poling at E=1.0–1.3kV/cmE=1.0–1.3 kV/cm, followed by an overpoling behavior. The increment of polarization ordering plays an important role while the high piezoelectric response builds up.