Browsing by Author "Liu, Cong-Qiang"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Global distribution and drivers of relative contributions among soil nitrogen sources to terrestrial plants(Springer Science and Business Media LLC, 2024-07) Hu, Chao-Chen; Liu, Xueyan; Driscoll, Avery W.; Kuang, Yuanwen; Brookshire, E. N. Jack; Lü, Xiao-Tao; Chen, Chong-Juan; Song, Wei; Mao, Rong; Liu, Cong-Qiang; Houlton, Benjamin Z.Soil extractable nitrate, ammonium, and organic nitrogen (N) are essential N sources supporting primary productivity and regulating species composition of terrestrial plants. However, it remains unclear how plants utilize these N sources and how surface-earth environments regulate plant N utilization. Here, we establish a framework to analyze observational data of natural N isotopes in plants and soils globally, we quantify fractional contributions of soil nitrate (fNO3-), ammonium (fNH4+), and organic N (fEON) to plant-used N in soils. We find that mean annual temperature (MAT), not mean annual precipitation or atmospheric N deposition, regulates global variations of fNO3-, fNH4+, and fEON. The fNO3- increases with MAT, reaching 46% at 28.5 °C. The fNH4+ also increases with MAT, achieving a maximum of 46% at 14.4 °C, showing a decline as temperatures further increase. Meanwhile, the fEON gradually decreases with MAT, stabilizing at about 20% when the MAT exceeds 15 °C. These results clarify global plant N-use patterns and reveal temperature rather than human N loading as a key regulator, which should be considered in evaluating influences of global changes on terrestrial ecosystems.Item Nitrate is an important nitrogen source for Arctic tundra plants(2018-03) Liu, Xue-Yan; Koba, Keisuke; Koyama, Lina A.; Hobbie, Sarah E.; Weiss, Marissa S.; Inagaki, Yoshiyuki; Shaver, Gaius R.; Giblin, Anne E.; Hobara, Satoru; Nadelhoffer, Knute J.; Sommerkorn, Martin; Rastetter, Edward B.; Kling, George W.; Laundre, James A.; Yano, Yuriko; Makabe, Akiko; Yano, Midori; Liu, Cong-QiangPlant nitrogen (N) use is a key component of the N cycle in terrestrial ecosystems. The supply of N to plants affects community species composition and ecosystem processes such as photosynthesis and carbon (C) accumulation. However, the availabilities and relative importance of different N forms to plants are not well understood. While nitrate (NO3-) is a major N form used by plants worldwide, it is discounted as a N source for Arctic tundra plants because of extremely low NO3- concentrations in Arctic tundra soils, undetectable soil nitrification, and plant-tissue NO3- that is typically below detection limits. Here we reexamine NO3- use by tundra plants using a sensitive denitrifier method to analyze plant-tissue NO3- Soil-derived NO3- was detected in tundra plant tissues, and tundra plants took up soil NO3- at comparable rates to plants from relatively NO3--rich ecosystems in other biomes. Nitrate assimilation determined by 15N enrichments of leaf NO3- relative to soil NO3- accounted for 4 to 52% (as estimated by a Bayesian isotope-mixing model) of species-specific total leaf N of Alaskan tundra plants. Our finding that in situ soil NO3- availability for tundra plants is high has important implications for Arctic ecosystems, not only in determining species compositions, but also in determining the loss of N from soils via leaching and denitrification. Plant N uptake and soil N losses can strongly influence C uptake and accumulation in tundra soils. Accordingly, this evidence of NO3- availability in tundra soils is crucial for predicting C storage in tundra.