Browsing by Author "Liu, Guanghui"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Characterization of Streptococcal Platelet-Activating Factor Acetylhydrolase Variants That Are Involved in Innate Immune Evasion(2013-06-17) Liu, Guanghui; Liu, Mengyao; Xie, Gang; Lei, BenfangHuman pathogen group A streptococcus (GAS) has developed mechanisms to subvert innate immunity. We recently reported that the secreted esterase produced by serotype M1 GAS (SsEM1) reduces neutrophil recruitment by targeting platelet-activating factor (PAF). SsEM1 and SsE produced by serotype M28 GAS (SsEM28) have a 37% sequence difference. This study aims at determining whether SsEM28 is also a PAF acetylhydrolase and participates in innate immune evasion. We also examined whether SsE evolved to target PAF by characterizing the PAF acetylhydrolase (PAF-AH) activity and substrate specificity of SsEM1, SsEM28, SeE, the SsE homologue in Streptococcus equi, and human plasma PAF-AH (hpPAF-AH). PAF incubated with SsEM28 or SeE was converted into lyso-PAF. SsEM1 and SsEM28 had kcat values of 373 s−1 and 467 s−1, respectively, that were ≥30-fold greater than that of hpPAF-AH (12 s−1). The comparison of SsEM1, SsEM28, and hpPAF-AH in kcat and Km in hydrolyzing triglycerides, acetyl esters, and PAF indicates that the SsE proteins are more potent hydrolases against PAF and have high affinity for PAF. SsEM28 possesses much lower esterase activities against triglycerides and other esters than SsEM1 but have similar potency with SsEM1 in PAF hydrolysis. Deletion of sseM28 in a covS deletion mutant of GAS increased neutrophil recruitment and reduced skin infection, whereas in trans expression of SsEM28 in GAS reduced neutrophil infiltration and increased skin invasion in subcutaneous infection of mice. These results suggest that the SsE proteins evolved to target PAF for enhancing innate immune evasion and skin invasion.Item Neutrophils Select Hypervirulent CovRS Mutants of M1T1 Group A Streptococcus during Subcutaneous Infection of Mice(2014-04) Li, Jinquan; Liu, Guanghui; Feng, Wenchao; Zhou, Yang; Liu, Mengyao; Wiley, James A.; Lei, BenfangPathogen mutants arise during infections. Mechanisms of selection for pathogen variants are poorly understood. We tested whether neutrophils select mutations in the two-component regulatory system CovRS of group A Streptococcus (GAS) during infection using the lack of production of the protease SpeB (SpeB activity negative [SpeBA−]) as a marker. Depletion of neutrophils by antibodies RB6-8C5 and 1A8 reduced the percentage of SpeBA− variants (SpeBA−%) recovered from mice infected with GAS strain MGAS2221 by >76%. Neutrophil recruitment and SpeBA−% among recovered GAS were reduced by 95% and 92%, respectively, in subcutaneous MGAS2221 infection of CXCR2−/− mice compared with control mice. In air sac infection with MGAS2221, levels of neutrophils and macrophages in lavage fluid were reduced by 49% and increased by 287%, respectively, in CXCR2−/− mice compared with control mice, implying that macrophages play an insignificant role in the reduction of selection for SpeBA− variants in CXCR2−/− mice. One randomly chosen SpeBA− mutant outcompeted MGAS2221 in normal mice but was outcompeted by MGAS2221 in neutropenic mice and had enhancements in expression of virulence factors, innate immune evasion, skin invasion, and virulence. This and nine other SpeBA− variants from a mouse all had nonsynonymous covRS mutations that resulted in the SpeBA− phenotype and enhanced expression of the CovRS-controlled secreted streptococcal esterase (SsE). Our findings are consistent with a model that neutrophils select spontaneous covRS mutations that maximize the potential of GAS to evade neutrophil responses, resulting in variants with enhanced survival and virulence. To our knowledge, this is the first report of the critical contribution of neutrophils to the selection of pathogen variants.Item A periplasmic arsenite-binding protein involved in regulating arsenite oxidation(2011-12) Liu, Guanghui; Liu, Mengyao; Kim, Eun-Hae; Maaty, Walid S.; Bothner, Brian; Lei, Benfang; Rensing, Christopher; Wang, Gejiao; McDermott, Timothy R.Arsenic (As) is the most common toxic element in the environment, ranking first on the Superfund List of Hazardous Substances. Microbial redox transformations are the principal drivers of As chemical speciation, which in turn dictates As mobility and toxicity. Consequently, in order to manage or remediate environmental As, land managers need to understand how and why microorganisms react to As. Studies have demonstrated a two-component signal transduction system comprised of AioS (sensor kinase) and AioR (response regulator) is involved in regulating microbial AsIII oxidation, with the AsIII oxidase structural genes aioB and aioA being upregulated by AsIII. However, it is not known whether AsIII is first detected directly by AioS or by an intermediate. Herein we demonstrate the essential role of a periplasmic AsIII-binding protein encoded by aioX, which is upregulated by AsIII. An ΔaioX mutant is defective for upregulation of the aioBA genes and consequently AsIII oxidation. Purified AioX expressed without its TAT-type signal peptide behaves as a monomer (MW 32 kDa), and Western blots show AioX to be exclusively associated with the cytoplasmic membrane. AioX binds AsIII with a KD of 2.4 µM AsIII; however, mutating a conserved Cys108 to either alanine or serine resulted in lack of AsIII binding, lack of aioBA induction, and correlated with a negative AsIII oxidation phenotype. The discovery and characterization of AioX illustrates a novel AsIII sensing mechanism that appears to be used in a range of bacteria and also provides one of the first examples of a bacterial signal anchor protein.Item The sagA / pel locus does not regulate the expression of the M protein of the M1T1 lineage of group A Streptococcus(2013-11) Zhou, Yang; Hanks, Tracey S.; Feng, Wenchao; Li, Jinquan; Liu, Guanghui; Liu, Mengyao; Lei, BenfangAltered expression of Group A Streptococcus (GAS) virulence factors, including the M protein, can result as a consequence of spontaneous genetic changes that occur during laboratory and animal passage. Occurrence of such secondary mutations during targeted gene deletion could confound the interpretation of effects attributable to the function of the gene being investigated. Contradicting reports on whether the sagA/pel locus regulates the M protein-encoding emm might be due to inconsistent occurrence of mutations unrelated with sagA. This study examined the possibility that altered emm expression observed in association with sagA/pel deletion mutants is artifactual. sagA deletion mutants (MGAS2221ΔsagA) of M1T1 isolate MGAS2221 obtained using liquid broth for GAS growth during the deletion process had diminished emm transcription and no detectable M protein production. In contrast, a ΔsagA mutant of another closely genetically related M1T1 isolate had normal emm expression. The sagB gene does not regulate emm; however, one of three MGAS2221ΔsagB mutants had diminished emm expression. The emm regulator mga was downregulated in these M protein expression-negative strains. These results argue that sagA deletion does not directly cause the downregulation of emm expression. Indeed, two MGAS2221ΔsagA mutants obtained using agar plates for GAS growth during the deletion process both had normal emm expression. We conclude that the sagA/pel locus does not regulate emm expression in the M1T1 lineage and provide a protocol for targeted gene deletion that we find less prone to the generation of mutants exhibiting downregulation in emm expression.Item Serotype M3 and M28 Group A Streptococci Have Distinct Capacities to Evade Neutrophil and TNF-α Responses and to Invade Soft Tissues(2015-06-05) Stetzner, Zachary W.; Li, Dengfeng; Feng, Wenchao; Liu, Mengyao; Liu, Guanghui; Wiley, James A.; Lei, BenfangThe M3 Serotype of Group A Streptococcus (GAS) is one of the three most frequent serotypes associated with severe invasive GAS infections, such as necrotizing fasciitis, in the United States and other industrialized countries. The basis for this association and hypervirulence of invasive serotype M3 GAS is not fully understood. In this study, the sequenced serotype M3 strain, MGAS315, and serotype M28 strain, MGAS6180, were characterized in parallel to determine whether contemporary M3 GAS has a higher capacity to invade soft tissues than M28 GAS. In subcutaneous infection, MGAS315 invaded almost the whole skin, inhibited neutrophil recruitment and TNF-α production, and was lethal in subcutaneous infection of mice, whereas MGAS6180 did not invade skin, induced robust neutrophil infiltration and TNF-α production, and failed to kill mice. In contrast to MGAS6180, MGAS315 had covS G1370T mutation. Either replacement of the covS1370T gene with wild-type covS in MGAS315 chromosome or in trans expression of wild-type covS in MGAS315 reduced expression of CovRS-controlled virulence genes hasA, spyCEP, and sse by >10 fold. MGAS315 covSwt lost the capacity to extensively invade skin and to inhibit neutrophil recruitment and had attenuated virulence, indicating that the covS G1370T mutation critically contribute to the hypervirulence of MGAS315. Under the background of functional CovRS, MGAS315 covSwt still caused greater lesions than MGAS6180, and, consistently under the background of covS deletion, MGAS6180 ΔcovS caused smaller lesions than MGAS315 ΔcovS. Thus, contemporary invasive M3 GAS has a higher capacity to evade neutrophil and TNF-α responses and to invade soft tissue than M28 GAS and that this skin-invading capacity of M3 GAS is maximized by natural CovRS mutations. These findings enhance our understanding of the basis for the frequent association of M3 GAS with necrotizing fasciitis.Item Serotype M3 and M28 Group A Streptococci Have Distinct Capacities to Evade Neutrophil and TNF-α Responses and to Invade Soft Tissues(2015-06) Stetzner, Zachary W.; Li, Dengfeng; Feng, Wenchao; Liu, Mengyao; Liu, Guanghui; Wiley, James A.; Lei, BenfangThe M3 Serotype of Group A Streptococcus (GAS) is one of the three most frequent serotypes associated with severe invasive GAS infections, such as necrotizing fasciitis, in the United States and other industrialized countries. The basis for this association and hypervirulence of invasive serotype M3 GAS is not fully understood. In this study, the sequenced serotype M3 strain, MGAS315, and serotype M28 strain, MGAS6180, were characterized in parallel to determine whether contemporary M3 GAS has a higher capacity to invade soft tissues than M28 GAS. In subcutaneous infection, MGAS315 invaded almost the whole skin, inhibited neutrophil recruitment and TNF-α production, and was lethal in subcutaneous infection of mice, whereas MGAS6180 did not invade skin, induced robust neutrophil infiltration and TNF-α production, and failed to kill mice. In contrast to MGAS6180, MGAS315 had covS G1370T mutation. Either replacement of the covS1370T gene with wild-type covS in MGAS315 chromosome or in trans expression of wild-type covS in MGAS315 reduced expression of CovRS-controlled virulence genes hasA, spyCEP, and sse by >10 fold. MGAS315 covSwt lost the capacity to extensively invade skin and to inhibit neutrophil recruitment and had attenuated virulence, indicating that the covS G1370T mutation critically contribute to the hypervirulence of MGAS315. Under the background of functional CovRS, MGAS315 covSwt still caused greater lesions than MGAS6180, and, consistently under the background of covS deletion, MGAS6180 ΔcovS caused smaller lesions than MGAS315 ΔcovS. Thus, contemporary invasive M3 GAS has a higher capacity to evade neutrophil and TNF-α responses and to invade soft tissue than M28 GAS and that this skin-invading capacity of M3 GAS is maximized by natural CovRS mutations. These findings enhance our understanding of the basis for the frequent association of M3 GAS with necrotizing fasciitis.