Browsing by Author "Liu, Tianbo"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item MEMS 3-dimensional scanner with SU-8 flexures for a handheld confocal microscope(Montana State University - Bozeman, College of Engineering, 2018) Liu, Tianbo; Chairperson, Graduate Committee: David DickensheetsThe conventional method for diagnosing skin cancer is to perform a biopsy followed by pathology. However not only are biopsies invasive and likely to leave permanent scarring, they also sample the body sparsely. Fortunately, a non-invasive method of imaging called confocal laser scanning microscopy has shown great potential to replacing invasive biopsies. Confocal microscopy can use light to achieve high-resolution imaging of cells that lie underneath the surface of the skin. However, the large size of current confocal microscopes limits their application to all but the most accessible sites. In this dissertation, I address the miniaturization of confocal microscopy through the development of a new microelectromechanical systems scan mirror that can scan a focused beam in three dimensions. The scanner has a 4 mm aperture, and has the capability to replace all of the bulky beam scanners and focus mechanisms that contribute to the large size of current confocal microscopes. The fabrication of the scanner explores the use of the polymer SU-8 for its mechanical structures. The gimbal mirror has demonstrated scan angles in excess of plus or minus 3° mechanical for lateral scanning, and its deformable surface provided controllable deflection up to 10 microns for focus control. This newly developed scanner was integrated into a confocal system to test its imaging capabilities. The device demonstrated high-resolution scanning with simultaneous focus adjustment suitable for the next generation of miniaturized confocal laser scanning microscopes.Item MEMS-in-the-lens architecture for a miniature high-NA laser scanning microscope(2019-06) Liu, Tianbo; Rajadhyaksha, Milind; Dickensheets, David L.Laser scanning microscopes can be miniaturized for in vivo imaging by substituting optical microelectromechanical system (MEMS) devices in place of larger components. The emergence of multifunctional active optical devices can support further miniaturization beyond direct component replacement because those active devices enable diffraction-limited performance using simpler optical system designs. In this paper, we propose a catadioptric microscope objective lens that features an integrated MEMS device for performing biaxial scanning, axial focus adjustment, and control of spherical aberration. The MEMS-in-the-lens architecture incorporates a reflective MEMS scanner between a low-numerical-aperture back lens group and an aplanatic hyperhemisphere front refractive element to support high-numerical-aperture imaging. We implemented this new optical system using a recently developed hybrid polymer/silicon MEMS three-dimensional scan mirror that features an annular aperture that allows it to be coaxially aligned within the objective lens without the need for a beam splitter. The optical performance of the active catadioptric system is simulated and imaging of hard targets and human cheek cells is demonstrated with a confocal microscope that is based on the new objective lens design.