Browsing by Author "McPhee, K."
Now showing 1 - 11 of 11
- Results Per Page
- Sort Options
Item 2008 India, Australia and Western Regional Chickpea Line Evaluations(Central Agricultural Research Center, 2008) McPhee, K.; Chen, Chengci; Neill, Karnes E.; Heser, J.This paper evaluates chickpea selections from the India, Australia and the USDA-ARS Grain Legume Genetics and Physiology program in Pullman, Washington, for grain production potential in Central Montana. Chickpea grain yields were exceptional at Moccasin, with the trial averaging 1,248 lbs per acre (at 13% grain moisture; Table 3). As a whole, the India and Australia Lines were superior to the USDA line and three check varieties. These lines are in the Small Kabuli and Desi-type chickpeas versus the traditional Large Kabuli-type, as are the check varieties and USDA-ARS lines. Historically, small Kabuli and Desi-type chickpeas perform better at CARC. The Australian Desi-type Line AC48111 had the greatest grain production (at 13% moisture) with 1,478 lbs acre-1, but was only significantly greater (based on LSD0.05) than six other India and Australia lines and all but one of the USDA-ARS lines.Item 2008 Western Regional Spring Dry Pea and Lentil Evaluations(Central Agricultural Research Center, 2008) McPhee, K.; Vandemark, G.; Chen, Chengci; Neill, Karnes E.; Heser, J.This paper evaluates dry pea and lentil selections from the USDA-ARS Grain Legume Genetics and Physiology program in Pullman, Washington, for grain production potential in Central Montana. Dry pea grain yields were much below long-term means and is thought to be due to poor sub-soil moisture, a hail storm, snow and record lows in mid-June, and an insect (pea leaf weevil) infestation. The trial grain yield mean was 1,038 lbs acre-1 (converted to 13% grain moisture - field grain moisture was 923 lbs acre-1; Table 3). The smooth yellow line PS03101822 had the greatest grain production at 13% moisture, averaging 1,282 lbs acre-1, but was not significantly greater than the smooth green line PS03101445 (based on LSD0.05). Lentil grain yields averaged (at 13% moisture) 1,688 lbs acre-1, which was the best Western Regional lentil production at Moccasin since the 2000 crop-year, which averaged an all-time best of 2300 lbs acre-1 at 13% grain moisture (Table 4). At field grain moisture, the Turkish-red line LC01601724T had the highst grain production (not significant). When yields were converted to 13% grain moisture, Eston had the greatest grain production (1,883 lbs acre-1; not significant based on LSD0.05).Item Evaluation of Fall Seeded Winter Pea and Lentil Line Performance (2004)(Central Agricultural Research Center, 2004) Wichman, David M.; Chen, Chengci; McPhee, K.; Muehlbauer, F.J.; Neill, Karnes E.; Short, R.W.; Vavrovsky, JoeThis paper evaluates winter hardiness of fall seeded winter dry pea and lentil lines. All winter pea lines exhibited good winter hardiness, with the trial having an average of 106% survivability (Table 3). No differences were observed among the winter pea lines. The winter lentil lines did not exhibit good winter survival as the trial averaged only 69.8% survival (Table 4). Line LC9978094 had the highest survival rating (88.5%), but was not significantly higher than lines LC9979120, WA8649041 and LC9978057.Item Evaluation of Fall Seeded Winter Pea and Lentil Line Performance (2005)(Central Agricultural Research Center, 2005) Wichman, David M.; Chen, Chengci; McPhee, K.; Muehlbauer, F.J.; Neill, Karnes E.; Short, R.W.; Vavrovsky, JoeThis paper evaluates winter hardiness of fall seeded winter dry pea and lentil lines. All winter pea lines exhibited good winter hardiness, having a spring stand of 7.1 plants ft-2 or 95% of the target seeding rate (7.4 plants ft-2; Table 3). No differences were observed among the winter pea lines. The winter lentil lines exhibit slightly poorer winter survival than the winter pea lines. The trial had an average spring stand of 9.8 plants ft-2 or 89% of the target seeding rate (11.1 plants ft-2; Table 4).Item Evaluation of Fall Seeded Winter Pea and Lentil Line Performance (Western Regional Winter Dry Pea and Lentil Evaluation Trials) (2007)(Central Agricultural Research Center, 2007) Wichman, David M.; Chen, Chengci; Neill, Karnes E.; McPhee, K.; Short, R.W.; Vavrovsky, JoeThis paper evaluates winter hardiness of fall seeded winter dry pea and lentil lines. A difference in spring stand (visual evaluation) amongst the winter pea lines was exhibited, with Granger Austrian winter pea having the best stand, but was significantly similar to five other lines (Table 3). Upon visual observations, large differences in winter survival among the winter lentil lines were observed (Table 4). Turkish-type (“T”) lines LC02600449T and LC03600295T had the poorest spring stands with an average score of 1.6 and 1.8 (out of possible of 5), respectively.Item Evaluation of Fall Seeded Winter Pea and Lentil Line Performance (Western Regional Winter Dry Pea and Lentil Evaluation Trials) (2008)(Central Agricultural Research Center, 2008) Wichman, David M.; Chen, Chengci; Neill, Karnes E.; McPhee, K.; Short, R.W.; Vavrovsky, JoeThis paper evaluates winter hardiness of fall seeded winter dry pea and lentil lines. A difference in spring stand (visual evaluation) amongst the winter pea lines was exhibited, with Granger Austrian winter pea having the best stand, but was significantly similar to five other lines (Table 3). Upon visual observations, large differences in winter survival among the winter lentil lines were observed (Table 4). Turkish-type (“T”) lines LC02600449T and LC03600295T had the poorest spring stands with an average score of 1.6 and 1.8 (out of possible of 5), respectively.Item Evaluation of Fall-Seeded Winter Pea and Lentil Cultivars (2003)(Central Agricultural Research Center, 2003) Chen, Chengci; Wichman, David M.; McPhee, K.; Muehlbauer, F.J.; Neill, Karnes E.; Vavrovsky, JoeThis paper evaluates winter survival, performance, and yield of winter pea and lentil variety/breeding lines for grain and forage production potentials in Central Montana's dryland environment. Table 3 and Table 4 show winter survival, biomass and seed yield of each variety/breeding line of pea and lentil, respectively. Due to the dry summer in 2003, the yields of pea and lentil were generally low and little difference among the breeding lines of peas. Several lentil breeding lines performed superior than others (Table 4).Item Western Regional Dry Pea and Lentil Trials (2003)(Central Agricultural Research Center, 2003) Wichman, David M.; Chen, Chengci; McPhee, K.; Muehlbauer, F.J.; Neill, Karnes E.; Short, R.W.; Vavrovsky, JoeThis paper evaluates dry pea and lentil lines for grain production potential in Central Montana's dryland environment. Despite receiving more than three-times the monthly average precipitation in April, crop year (April through August) precipitation was 85 percent of normal (8.73 inches vs. 10.24 inches), as severe drought like conditions continued in Central Montana. A severe infestation of grasshoppers plagued Central Ag. Research Center (CARC). These factors, coupled with the late seeding date (May 7th), resulted in much below normal pulse grain yields.Item Western Regional Dry Pea, Lentil and Chickpea Trials (2004)(Central Agricultural Research Center, 2004) Wichman, David M.; Chen, Chengci; McPhee, K.; Muehlbauer, F.J.; Neill, Karnes E.; Short, R.W.; Vavrovsky, JoeThis paper evaluates dry pea, lentil and chickpea lines for grain production potential in dryland environments. Despite receiving 74% of the normal crop-year precipitation (April-August), pulse crop yields were higher than in recent years. This rise in yields is attributed to early seeding (April 7th), being seeded into fallow soil conditions, timely precipitation events and cool summer temperatures.Item Western Regional Dry Pea, Lentil and Chickpea Trials (2005)(Central Agricultural Research Center, 2005) Wichman, David M.; Chen, Chengci; McPhee, K.; Muehlbauer, F.J.; Neill, Karnes E.; Short, R.W.; Vavrovsky, JoeThis paper evaluates dry pea, lentil and chickpea lines for grain production potential in dryland environments. Due to wet conditions in late April, the trials were seeded later (May 3rd) than desirable. As a result, yields were significantly depressed. Grain yields are reported as both harvest moisture and 12% moisture equivalent.Item Western Regional Dry Pea, Lentil and Chickpea Trials (2007)(Central Agricultural Research Center, 2007) Wichman, David M.; Chen, Chengci; McPhee, K.; Muehlbauer, F.J.; Neill, Karnes E.; Short, R.W.; Vavrovsky, JoeThis paper evaluates dry pea, lentil and chickpea lines for grain production potential in dryland environments. Dry pea grain yields averaged 1,422 lbs of dry pea production per acre (Table 3). Delta smooth yellow pea had the highest grain production (1,627 lbs acre-1) but was not significantly higher than eight other pea lines (based on LSD(0.05)). Lentil yields were suppressed and may have been due to a growing nematode problem in adjacent fields (not confirmed in field trial established). The trial averaged 955.1 lbs per acre (Table 4). The “Brewer”-type lentil, Merrit, produced the most seed, averaging 1128.0 lbs acre-1, but was not statistically higher (based on LSD0.05) than eight other lines. Chickpea grain yields averaged 758.5 lbs of grain production per acre (Table 5.). Dylan kabuli-type chickpea produced the most grain (978.8 lbs acre-1), but was significantly similar to line CA0090B347C (based on LSD0.05).