Browsing by Author "Meslé, Margaux M."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Bacteroides thetaiotaomicron, a Model Gastrointestinal Tract Species, Prefers Heme as an Iron Source, Yields Protoporphyrin IX as a Product, and Acts as a Heme Reservoir(Bacteroides thetaiotaomicron, a Model Gastrointestinal Tract Species, Prefers Heme as an Iron Source, Yields Protoporphyrin IX as a Product, and Acts as a Heme Reservoir, 2023-03) Meslé, Margaux M.; Gray, Chase R.; Dlakić, Mensur; DuBois, Jennifer L.Members of the phylum Bacteroidetes are abundant in healthy gastrointestinal (GI) tract flora. Bacteroides thetaiotaomicron is a commensal heme auxotroph and representative of this group. Bacteroidetes are sensitive to host dietary iron restriction but proliferate in heme-rich environments that are also associated with colon cancer. We hypothesized that B. thetaiotaomicron may act as a host reservoir for iron and/or heme. In this study, we defined growth-promoting quantities of iron for B. thetaiotaomicron. B. thetaiotaomicron preferentially consumed and hyperaccumulated iron in the form of heme when presented both heme and nonheme iron sources in excess of its growth needs, leading to an estimated 3.6 to 8.4 mg iron in a model GI tract microbiome consisting solely of B. thetaiotaomicron. Protoporphyrin IX was identified as an organic coproduct of heme metabolism, consistent with anaerobic removal of iron from the heme leaving the intact tetrapyrrole as the observed product. Notably, no predicted or discernible pathway for protoporphyrin IX generation exists in B. thetaiotaomicron. Heme metabolism in congeners of B. thetaiotaomicron has previously been associated with the 6-gene hmu operon, based on genetic studies. A bioinformatics survey demonstrated that the intact operon is widespread in but confined to members of the Bacteroidetes phylum and ubiquitous in healthy human GI tract flora. Anaerobic heme metabolism by commensal Bacteroidetes via hmu is likely a major contributor to human host metabolism of the heme from dietary red meat and a driver for the selective growth of these species in the GI tract consortium.Item Isolation and Characterization of Lignocellulose-Degrading Geobacillus thermoleovorans from Yellowstone National Park(American Society for Microbiology, 2022-05) Meslé, Margaux M.; Mueller, Rebecca C.; Peach, Jesse; Eilers, Brian; Tripet, Brian P.; Bothner, Brian; Copié, Valérie; Peyton, Brent M.The microbial degradation of lignocellulose in natural ecosystems presents numerous biotechnological opportunities, including biofuel production from agricultural waste and feedstock biomass. To explore the degradation potential of specific thermophiles, we have identified and characterized extremophilic microorganisms isolated from hot springs environments that are capable of biodegrading lignin and cellulose substrates under thermoalkaline conditions, using a combination of culturing, genomics, and metabolomics techniques. Organisms that can use lignin and cellulose as a sole carbon source at 60 to 75°C were isolated from sediment slurry of thermoalkaline hot springs (71 to 81°C and pH 8 to 9) of Yellowstone National Park. Full-length 16S rRNA gene sequencing indicated that these isolates were closely related to Geobacillus thermoleovorans. Interestingly, most of these isolates demonstrated biofilm formation on lignin, a phenotype that is correlated with increased bioconversion. Assessment of metabolite level changes in two Geobacillus isolates from two representative springs were undertaken to characterize the metabolic responses associated with growth on glucose versus lignin carbon source as a function of pH and temperature. Overall, results from this study support that thermoalkaline springs harbor G. thermoleovorans microorganisms with lignocellulosic biomass degradation capabilities and potential downstream biotechnological applications.