Browsing by Author "Minor, Dylan"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Hypervirulent Group A Streptococcus of Genotype emm3 Invades the Vascular System in Pulmonary Infection of Mice(2018-06) Lei, Benfang; Minor, Dylan; Feng, Wenchao; Liu, MengyaoNatural mutations of the two-component regulatory system CovRS are frequently associated with invasive Group A Streptococcus (GAS) isolates and lead to the enhancement in virulence gene expression, innate immune evasion, systemic dissemination, and virulence. How CovRS mutations enhance systemic dissemination is not well understood. A hypervirulent GAS isolate of the emm3 genotype, MGAS315, was characterized using a mouse model of pulmonary infection to understand systemic dissemination. This strain has a G1370T mutation in the sensor kinase covS gene of CovRS. Intratracheal inoculation of MGAS315 led to the lung infection that displayed extensive Gram staining at the alveolar ducts, alveoli, and peribronchovascular and perivascular interstitium. The correction of the covS mutation did not alter the infection at the alveolar ducts and alveoli but prevented GAS invasion of the peribronchovascular and perivascular interstitium. Furthermore, the covS mutation allowed MGAS315 to disrupt and degrade the smooth muscle and endothelial layers of the blood vessels, directly contributing to systemic dissemination. It is concluded that hypervirulent emm3 GAS covS mutants can invade the perivascular interstitium and directly attack the vascular system for systemic dissemination.Item Null Mutations of Group A Streptococcus Orphan Kinase RocA: Selection in Mouse Infection and Comparison with CovS Mutations in Alteration of in vitro and in vivo Protease SpeB Expression and Virulence(2017-01) Feng, Wenchao; Minor, Dylan; Liu, Mengyao; Li, Jinquan; Ishaq, Suzanne L.; Yeoman, Carl J.; Lei, BenfangGroup A Streptococcus (GAS) acquires mutations of virulence regulator CovRS in human and mouse infections that upregulate virulence genes and downregulate protease SpeB. To identify in vivo mutants with novel phenotype, GAS isolates from mouse infection were screened by enzymatic assays for SpeB and platelet-activating factor acetylhydrolase Sse, identifying a new type of variants that had enhanced Sse expression and normal SpeB production (Sse(A+)SpeB(A+)). Sse(A+)SpeB(A+) variants have transcripts levels of CovRS-controlled virulence genes comparable to those of a covS mutant but had no covRS mutations. Genome resequencing of an Sse(A+)SpeB(A+) isolate identified a C605A nonsense mutation in orphan kinase gene rocA, and 6 other Sse(A+)SpeB(A+) isolates also had nonsense mutations or small indels of rocA RocA and CovS mutants have similar enhancement in expression of CovRS-controlled virulence genes at the exponential growth phase; however, mutations of RocA, but not CovS, do not downregulate speB transcription at stationary growth phase and in subcutaneous infection of mice. RocA and CovS mutations have greater enhancement in expression of hasA than spyCEP in mouse skin infection in comparison with wild type GAS. RocA mutants rank between wild type GAS and CovS mutants in skin invasion, inhibition of neutrophil recruitment, and virulence in subcutaneous infection of mice. Thus, GAS RocA mutants can be selected in subcutaneous infection of mice and exhibit distinct gene expression pattern and virulence from CovS mutants. The findings provide novel information for the understanding of GAS fitness mutations in vivo, virulence gene regulation, in vivo gene expression, and virulence.Item Requirement and Synergistic Contribution of Platelet-Activating Factor Acetylhydrolase Sse and Streptolysin S to Inhibition of Neutrophil Recruitment and Systemic Infection by Hypervirulent emm3 Group A Streptococcus in Subcutaneous Infection of Mice(2017-09) Feng, Wenchao; Minor, Dylan; Liu, Mengyao; Lei, BenfangHypervirulent group A streptococcus (GAS) can inhibit neutrophil recruitment and cause systemic infection in a mouse model of skin infection. The purpose of this study was to determine whether platelet-activating factor acetylhydrolase Sse and streptolysin S (SLS) have synergistic contributions to inhibition of neutrophil recruitment and systemic infection in subcutaneous infection of mice by MGAS315, a hypervirulent genotype emm3 GAS strain. Deletion of sse and sagA in MGAS315 synergistically reduced the skin lesion size and GAS burden in the liver and spleen. However, the mutants were persistent at skin sites and had similar growth factors in nonimmune blood. Thus, the low numbers of Δsse ΔsagA mutants in the liver and spleen were likely due to their reduction in the systemic dissemination. Few intact and necrotic neutrophils were detected at MGAS315 infection sites. In contrast, many neutrophils and necrotic cells were present at the edge of Δsse mutant infection sites on day 1 and at the edge of and inside Δsse mutant infection sites on day 2. ΔsagA mutant infection sites had massive numbers of and few intact neutrophils at the edge and center of the infection sites, respectively, on day 1 and were full of intact neutrophils or necrotic cells on day 2. Δsse ΔsagA mutant infection sites had massive numbers of intact neutrophils throughout the whole infection site. These sse and sagA deletion-caused changes in the histological pattern at skin infection sites could be complemented. Thus, the sse and sagA deletions synergistically enhance neutrophil recruitment. These findings indicate that both Sse and SLS are required but that neither is sufficient for inhibition of neutrophil recruitment and systemic infection by hypervirulent GAS.Item Tissue Tropism in Streptococcal Infection: Wild-Type M1T1 Group AStreptococcusIs Efficiently Cleared by Neutrophils Using an NADPH Oxidase-Dependent Mechanism in the Lung but Not in the Skin(2019-09) Lei, Benfang; Minor, Dylan; Feng, Wenchao; Jerome, Maria; Quinn, Mark T.; Jutila, Mark A.; Liu, MengyaoGroup A Streptococcus (GAS) commonly causes pharyngitis and skin infections. Little is known why streptococcal pharyngitis usually does not lead to pneumonia and why the skin is a favorite niche for GAS. To partially address these questions, the effectiveness of neutrophils in clearing wild-type (wt) M1T1 GAS strain MGAS2221 from the lung and from the skin was examined in murine models of intratracheal pneumonia and subcutaneous infection. Ninety-nine point seven percent of the MGAS2221 inoculum was cleared from the lungs of C57BL/6J mice at 24 h after inoculation, while there was no MGAS2221 clearance from skin infection sites. The bronchial termini had robust neutrophil infiltration, and depletion of neutrophils abolished MGAS2221 clearance from the lung. Phagocyte NADPH oxidase but not myeloperoxidase was required for MGAS2221 clearance. Thus, wt M1T1 GAS can be cleared by neutrophils using an NADPH oxidase-dependent mechanism in the lung. MGAS2221 induced robust neutrophil infiltration at the edge of skin infection sites and throughout infection sites at 24 h and 48 h after inoculation, respectively. Neutrophils within MGAS2221 infection sites had no nuclear staining. Skin infection sites of streptolysin S-deficient MGAS2221 ΔsagA were full of neutrophils with nuclear staining, whereas MGAS2221 ΔsagA infection was not cleared. Gp91phox knockout (KO) and control mice had similar GAS numbers at skin infection sites and similar abilities to select SpeB activity-negative (SpeBA-) variants. These results indicate that phagocyte NADPH oxidase-mediated GAS killing is compromised in the skin. Our findings support a model for GAS skin tropism in which GAS generates an anoxic niche to evade phagocyte NADPH oxidase-mediated clearance.