Browsing by Author "Na, GunNam"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Enhancing microRNA167A expression in seed decreases the α-linolenic acid content and increases seed size in Camelina sativa(2019-01) Na, GunNam; Mu, Xiaopeng; Grabowski, Paul; Schmutz, Jeremy A.; Lu, ChaofuDespite well-established roles of microRNAs in plant development, little has been addressed to understand their effects in seeds especially on lipid metabolism. In this study, we showed that overexpressing microRNA167A (miR167OE) in camelina (Camelina sativa) under a seed-specific promoter changed fatty acid composition and increased seed size. Specifically, the miR167OE seeds had a lower α-linolenic acid with a concomitantly higher linoleic acid content than the wild type. This decreased level of fatty acid desaturation corresponded to a decreased transcriptional expression of the camelina fatty acid dsesaturase3 (CsFAD3) in developing seeds. MiR167 targeted the transcription factor auxin response factor (CsARF8) in camelina, as had been reported previously in Arabidopsis. Chromatin immunoprecipitation experiments combined with transcriptome analysis indicated that CsARF8 bound to promoters of camelina bZIP67 and ABI3 genes. These transcription factors directly or through the ABI3-bZIP12 pathway regulate CsFAD3 expression and affect the α-linolenic acid accumulation. In addition to decipher the miR167A-CsARF8 mediated transcriptional cascade for CsFAD3 suppression, transcriptome analysis was conducted to implicate mechanisms that regulate seed size in camelina. Expression levels of many genes were altered in miR167OE, including orthologs that have previously been identified to affect seed size in other plants. Most notably, genes for seed coat development such as suberin and lignin biosynthesis were down-regulated.Item Improved fatty acid profiles in seeds of Camelina sativa by artificial microRNA mediated FATB gene suppression(2018-09) Ozseyhan, Mehmet E.; Li, Pengcheng; Na, GunNam; Li, Zhenjing; Wang, Changlu; Lu, ChaofuThe fatty acid profile of plant oils determines their quality and uses. Saturated fatty acids are often not desirable from the standpoints of nutrition and some industrial applications. Camelina sativa is a re-emerged oilseed crop, however its oil needs to be improved to meet different application requirements. In this study, saturated fatty acids were greatly reduced by down-regulating genes encoding the fatty acyl-ACP thioesterases (FATB). An artificial microRNA (amiFATB) was created by replacing a microRNA sequence in the camelina Csa-miR159a gene with a FATB gene specific sequence. Seed-specific expression of amiFATB caused a 45% reduction of palmitic acid (16:0) and a 38% reduction of stearic acid (18:0) compared to wildtype seeds. The total saturated fatty acid content was decreased by 35% from 14.6% to 9.4% of total fatty acids. When amiFATB was expressed in a high-oleic acid transgenic line, it caused further increased oleic acid content. This work demonstrates that the FATB genes in camelina can be effectively knocked down by an artificial microRNA targeting gene-specific sequences, thus provides an additional tool to improve seed oils for desired properties.