Browsing by Author "Nelson, Daniel"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Interactions between temperature and nutrients across levels of ecological organization(2015-03) Cross, Wyatt F.; Hood, James M.; Benstead, Jonathan P.; Huryn, Alexander D.; Nelson, DanielTemperature and nutrient availability play key roles in controlling the pathways and rates at which energy and materials move through ecosystems. These factors have also changed dramatically on Earth over the past century as human activities have intensified. Although significant effort has been devoted to understanding the role of temperature and nutrients in isolation, less is known about how these two factors interact to influence ecological processes. Recent advances in ecological stoichiometry and metabolic ecology provide a useful framework for making progress in this area, but conceptual synthesis and review are needed to help catalyze additional research. Here, we examine known and potential interactions between temperature and nutrients from a variety of physiological, community, and ecosystem perspectives. We first review patterns at the level of the individual, focusing on four traits – growth, respiration, body size, and elemental content – that should theoretically govern how temperature and nutrients interact to influence higher levels of biological organization. We next explore the interactive effects of temperature and nutrients on populations, communities, and food webs by synthesizing information related to community size spectra, biomass distributions, and elemental composition. We use metabolic theory to make predictions about how population-level secondary production should respond to interactions between temperature and resource supply, setting up qualitative predictions about the flows of energy and materials through metazoan food webs. Last, we examine how temperature–nutrient interactions influence processes at the whole-ecosystem level, focusing on apparent vs. intrinsic activation energies of ecosystem processes, how to represent temperature–nutrient interactions in ecosystem models, and patterns with respect to nutrient uptake and organic matter decomposition. We conclude that a better understanding of interactions between temperature and nutrients will be critical for developing realistic predictions about ecological responses to multiple, simultaneous drivers of global change, including climate warming and elevated nutrient supply.Item Resource Supply Governs the Apparent Temperature Dependence of Animal Production in Stream Ecosystems(2020-10) Junker, James R.; Cross, Wyatt F.; Benstead, Jonathan P.; Huryn, Alexander D.; Hood, James M.; Nelson, Daniel; Gislason, Gisli M.; Olafsson, Jon S.Rising global temperatures are changing how energy and materials move through ecosystems, with potential consequences for the role of animals in these processes. We tested a central prediction of the metabolic scaling framework—the temperature independence of animal community production—using a series of geothermally heated streams and a comprehensive empirical analysis. We show that the apparent temperature sensitivity of animal production was consistent with theory for individuals (Epind = 0.64 vs. 0.65 eV), but strongly amplified relative to theoretical expectations for communities, both among (Epamong = 0.67 vs. 0 eV) and within (Epwithin = 1.52 vs. 0 eV) streams. After accounting for spatial and temporal variation in resources, we show that the apparent positive effect of temperature was driven by resource supply, providing strong empirical support for the temperature independence of invertebrate production and the necessary inclusion of resources in metabolic scaling efforts.