Browsing by Author "Palomaki, Ross T."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Assessment of L-band InSAR snow estimation techniques over a shallow, heterogeneous prairie snowpack(Elsevier BV, 2023-10) Palomaki, Ross T.; Sproles, Eric ASnow water equivalent (SWE) is a critical input for weather, climate, and water resource management models at local to global scales. Despite its importance, global SWE measurements that are accurate, consistent, and at sufficiently high spatiotemporal resolutions are not currently available. L-band interferometric synthetic aperture radar (InSAR) techniques have been used to measure SWE at local to regional scales, and two upcoming L-band SAR satellite missions have renewed interest in these techniques to provide regular SWE measurements at the global scale. However, previous research demonstrating the capabilities of L-band InSAR-SWE measurement has been limited to mountain or tundra snowpack regimes. Here we examine the feasibility of applying the same techniques over a prairie snowpack, which are typically characterized by shallow snow depths (mean snow depth of 0.22 m in this study), exposed agricultural vegetation, and high spatial variability over short distances. Our study area in central Montana, USA (47.060, -109.951) was a validation site for NASA SnowEx 2021, as part of the UAVSAR snow timeseries. Airborne L-band SAR imagery was acquired by the UAVSAR platform while concurrent snow measurements were collected using uncrewed aerial vehicle (UAV)-based LiDAR, UAV-based photogrammetry, and ground-based manual techniques. This validation dataset enables an investigation of the effects of sub-pixel snow cover heterogeneity and exposed agricultural vegetation stubble on SAR data and the resulting SWE estimations. Results based on repeated application of the Kolmogorov–Smirnov test show that UAVSAR VV phase change is sensitive to differences in snow cover but relatively unaffected by differences in agricultural stubble height. However, we did not find similarly definitive results when we used the same phase change data to estimate SWE. Although broad spatial patterns were similar in both LiDAR-derived and InSAR-derived SWE estimates, considerable differences in the two estimates were apparent in areas with large sub-pixel snow depth variability. Our results indicate that additional work is necessary to derive accurate SWE estimates in prairie environments. Regular measurements from L-band SAR satellites will provide an excellent opportunity to refine InSAR-based snow estimation techniques over shallow, heterogeneous snowpacks.Item New snow metrics for a warming world(Wiley, 2021-06) Nolin, Anne W.; Sproles, Eric A.; Rupp, David E.; Crumley, Ryan L.; Webb, Mariana J.; Palomaki, Ross T.; Mar, EugeneSnow is Earth's most climatically sensitive land cover type. Traditional snow metrics may not be able to adequately capture the changing nature of snow cover. For example, April 1 snow water equivalent (SWE) has been an effective index for streamflow forecasting, but it cannot express the effects of midwinter melt events, now expected in warming snow climates, nor can we assume that station-based measurements will be representative of snow conditions in future decades. Remote sensing and climate model data provide capacity for a suite of multi-use snow metrics from local to global scales. Such indicators need to be simple enough to “tell the story” of snowpack changes over space and time, but not overly simplistic or overly complicated in their interpretation. We describe a suite of spatially explicit, multi-temporal snow metrics based on global satellite data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) and downscaled climate model output for the U.S. We describe and provide examples for Snow Cover Frequency (SCF), Snow Disappearance Date (SDD), At-Risk Snow (ARS), and Frequency of a Warm Winter (FWW). Using these retrospective and prospective snow metrics, we assess the current and future snow-related conditions in three hydroclimatically different U.S. watersheds: the Truckee, Colorado Headwaters, and Upper Connecticut. In the two western U.S. watersheds, SCF and SDD show greater sensitivity to annual differences in snow cover compared with data from the ground-based Snow Telemetry (SNOTEL) network. The eastern U.S. watershed does not have a ground-based network of data, so these MODIS-derived metrics provide uniquely valuable snow information. The ARS and FWW metrics show that the Truckee Watershed is highly vulnerable to conversion from snowfall to rainfall (ARS) and midwinter melt events (FWW) throughout the seasonal snow zone. In comparison, the Colorado Headwaters and Upper Connecticut Watersheds are colder and much less vulnerable through mid- and late-century.Item SnowCloudMetrics: Snow Information for Everyone(2020-10) Crumley, Ryan L.; Palomaki, Ross T.; Nolin, Anne W.; Sproles, Eric A.; Mar, Eugene J.Snow is a critical component of the climate system, provides fresh water for millions of people globally, and affects forest and wildlife ecology. Snowy regions are typically data sparse, especially in mountain environments. Remotely-sensed snow cover data are available globally but are challenging to convert into accessible, actionable information. SnowCloudMetrics is a web portal for on-demand production and delivery of snow information including snow cover frequency (SCF) and snow disappearance date (SDD) using Google Earth Engine (GEE). SCF and SDD are computed using the Moderate Resolution Imaging Spectroradiometer (MODIS) Snow Cover Binary 500 m (MOD10A1) product. The SCF and SDD metrics are assessed using 18 years of Snow Telemetry records at more than 750 stations across the Western U.S. SnowCloudMetrics provides users with the capacity to quickly and efficiently generate local-to-global scale snow information. It requires no user-side data storage or computing capacity, and needs little in the way of remote sensing expertise. SnowCloudMetrics allows users to subset by year, watershed, elevation range, political boundary, or user-defined region. Users can explore the snow information via a GEE map interface and, if desired, download scripts for access to tabular and image data in non-proprietary formats for additional analyses. We present global and hemispheric scale examples of SCF and SDD. We also provide a watershed example in the transboundary, snow-dominated Amu Darya Basin. Our approach represents a new, user-driven paradigm for access to snow information. SnowCloudMetrics benefits snow scientists, water resource managers, climate scientists, and snow related industries providing SCF and SDD information tailored to their needs, especially in data sparse regions.