Browsing by Author "Patterson, Angela Jean"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Investigating the role of allostery through changes in protein stability and dynamics(Montana State University - Bozeman, College of Letters & Science, 2021) Patterson, Angela Jean; Chairperson, Graduate Committee: Brian Bothner; Faiz Ahmad and Jaigeeth Deveryshetty were authors and Jenna R. Mattice, Nilisha Pokhrel, Brian Bothner and Edwin Antony were co-authors of the article, 'Hydrogen-deuterium exchange reveals a dynamic DNA-binding map of replication protein A' in the journal 'Nucleic Acids Research' which is contained within this dissertation.; Zhongchao Zhao, Elizabeth Waymire, Adam Zlotnick, and Brian Bothner were co-authors of the article, 'Dynamics of hepatitis B virus capsid protein dimer regulates assembly through an allosteric network' in the journal 'ACS chemical biology' which is contained within this dissertation.; Paul B.G. van Erp was an author and Ravi Kant, Luke Berry, Sarah M. Golden, Brittney L. Forsman, Joshua Carter, Ryan N. Jackson, Brian Bothner and Blake Wiedenheft were co-authors of the article, 'Conformational dynamics of DNA binding and Cas 3 recruitment by the CRISPR RNA-guide cascade complex' in the journal 'ACS chemical biology' which is contained within this dissertation.; Aidan White, Elizabeth Waymire, Sophie Fleck, Sarah Golden, Royce Wilkinson, Blake Wiedenheft and Brian Bothner were co-authors of the article, 'Thermodynamics of CRISPR-anti-CRISPR interactions provides mechanistic insight into inhibition' which is contained within this dissertation.Allostery is the presence of a communication network that links functional sites of a protein that are distal from one another. The existence of an allosteric network can be observed through conformational change or a change in protein dynamics. These networks can be used to provide insight into the mechanistic function of proteins or protein complexes. In this thesis, four protein complexes were studied (RPA, HBV, Cascade, and Csy) and allosteric networks within the complexes were observed by monitoring the changes in protein dynamics upon an energy perturbation. To measure the changes in protein dynamics, hydrogen deuterium exchange mass spectrometry was used. This technique allows for the determination of how often the hydrogen bonding within a protein structure is broken. By tracking the longevity of the hydrogen bonding network that comprises the studied protein's structure, the dynamics of the protein can be studied. In this work, each of the proteins had changes in protein dynamics that were distal from the site of the energy perturbation that had functional impacts on each of the protein complexes. The combined presence of the distal changes in dynamics with an effect on protein function fits the definition of allostery. If allostery is present in these four diverse systems, is it possible that allostery is present in all proteins?