Browsing by Author "Porporato, Amilcare"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Eco-hydrological controls on summertime convective rainfall triggers(2007-01) Juang, Jehn-Yih; Katul, Gabriel G.; Porporato, Amilcare; Stoy, Paul C.; Siqueira, Mario B. S.; Detto, Matteo; Kim, Hyun-Seok; Oren, RamTriggers of summertime convective rainfall depend on numerous interactions and feedbacks, often compounded by spatial variability in soil moisture and its impacts on vegetation function, vegetation composition, terrain, and all the complex turbulent entrainment processes near the capping inversion. To progress even within the most restricted and idealized framework, many of the governing processes must be simplified and parameterized. In this work, a zeroth‐order representation of the dynamical processes that control convective rainfall triggers – namely land surface fluxes of heat and moisture – is proposed and used to develop a semianalytical model to explore how differential sensitivities of various ecosystems to soil moisture states modify convective rainfall triggers. The model is then applied to 4 years (2001–2004) of half‐hourly precipitation, soil moisture, environmental, and eddy‐covariance surface heat flux data collected at a mixed hardwood forest (HW), a maturing planted loblolly pine forest (PP), and an abandoned old field (OF) experiencing the same climatic and edaphic conditions. We found that the sensitivity of PP to soil moisture deficit enhances the trigger of convective rainfall relative to HW and OF, with enhancements of about 25% and 30% for dry moisture states, and 5% and 15% for moist soil moisture states, respectively. We discuss the broader implications of these findings on potential modulations of convective rainfall triggers induced by projected large‐scale changes in timberland composition within the Southeastern United States.Item The Effects of Elevated Atmospheric CO2 and Nitrogen Amendments on Subsurface CO2 Production and Concentration Dynamics in a Maturing Pine Forest(2009-05) Daly, Edoardo; Palmroth, Sari; Stoy, Paul C.; Siqueira, Mario B. S.; Oishi, A. Christopher; Juang, Jehn-Yih; Oren, Ram; Porporato, Amilcare; Katul, Gabriel G.Profiles of subsurface soil CO2 concentration, soil temperature, and soil moisture, and throughfall were measured continuously during the years 2005 and 2006 in 16 locations at the free air CO2 enrichment facility situated within a temperate loblolly pine (Pinus taeda L.) stand. Sampling at these locations followed a 4 by 4 replicated experimental design comprised of two atmospheric CO2 concentration levels (ambient [CO2]a, ambient + 200 ppmv, [CO2]e) and two soil nitrogen (N) deposition levels (ambient, ambient + fertilization at 11.2 gN m−2 year−1). The combination of these measurements permitted indirect estimation of below ground CO2 production and flux profiles in the mineral soil. Adjacent to the soil CO2 profiles, direct (chamber-based) measurements of CO2 fluxes from the soil–litter complex were simultaneously conducted using the automated carbon efflux system. Based on the measured soil CO2 profiles, neither [CO2]e nor N fertilization had a statistically significant effect on seasonal soil CO2, CO2 production, and effluxes from the mineral soil over the study period. Soil moisture and temperature had different effects on CO2 concentration depending on the depth. Variations in CO2 were mostly explained by soil temperature at deeper soil layers, while water content was an important driver at the surface (within the first 10 cm), where CO2 pulses were induced by rainfall events. The soil effluxes were equal to the CO2 production for most of the time, suggesting that the site reached near steady-state conditions. The fluxes estimated from the CO2 profiles were highly correlated to the direct measurements when the soil was neither very dry nor very wet. This suggests that a better parameterization of the soil CO2 diffusivity is required for these soil moisture extremes.Item Hydrologic and atmospheric controls on convective precipitation events in a southeastern US mosaic landscape(2007-03) Juang, Jehn-Yih; Porporato, Amilcare; Stoy, Paul C.; Siqueira, Mario B. S.; Oishi, A. Christopher; Detto, Matteo; Kim, Hyun-Seok; Katul, Gabriel G.The pathway to summertime convective precipitation remains a vexing research problem because of the nonlinear feedback between soil moisture content and the atmosphere. Understanding this feedback is important to the southeastern U. S. region, given the high productivity of the timberland area and the role of summertime convective precipitation in maintaining this productivity. Here we explore triggers of convective precipitation for a wide range of soil moisture states and air relative humidity in a mosaic landscape primarily dominated by hardwood forests, pine plantations, and abandoned old field grassland. Using half‐hourly sensible heat flux, micrometeorological, hydrological time series measurements collected at adjacent HW, PP, and OF ecosystems, and a simplified mixed layer slab model, we developed a conditional sampling scheme to separate convective from nonconvective precipitation events in the observed precipitation time series. The series analyzed (2001–2004) includes some of the wettest and driest periods within the past 57 years. We found that convective precipitation events have significantly larger intensities (mean of 2.1 mm per 30 min) when compared to their nonconvective counterparts (mean of 1.1 mm per 30 min). Interestingly, the statistics of convective precipitation events, including total precipitation, mean intensity, and maximum intensity, are statistically different when convective precipitation is triggered by moist and dry soil conditions but are robust in duration. Using the data, we also showed that a “boundary line” emerges such that for a given soil moisture state, air relative humidity must exceed a defined minimum threshold before convective precipitation is realized.Item On the spectrum of soil moisture in a shallow-rooted uniform pine forest: from hourly to inter-annual scales(2007-05) Katul, Gabriel G.; Porporato, Amilcare; Daly, Edoardo; Oishi, A. Christopher; Kim, Hyun-Seok; Stoy, Paul C.; Juang, Jehn-Yih; Siqueira, Mario B. S.The spectrum of soil moisture content at scales ranging from 1 hour to 8 years is analyzed for a site whose hydrologic balance is primarily governed by precipitation (p), and evapotranspiration (ET). The site is a uniformly planted loblolly pine stand situated in the southeastern United States and is characterized by a shallow rooting depth (RL) and a near‐impervious clay pan just below RL. In this setup, when ET linearly increases with increasing root zone soil moisture content (θ), an analytical model can be derived for the soil moisture content energy spectrum (Es(f), where f is frequency) that predicts the soil moisture “memory” (taken as the integral timescale) as β1−1 ≈ ηRL/ETmax, where ETmax is the maximum measured hourly ET and η is the soil porosity. The spectral model suggests that Es(f) decays at f−2−α at high f but almost white (i.e., f0) at low f, where α is the power law exponent of the rainfall spectrum at high f (α ≈ 0.75 for this site). The rapid Es(f) decay at high f makes the soil moisture variance highly imbalanced in the Fourier domain, thereby permitting much of the soil moisture variability to be described by a limited number of Fourier modes. For the 8‐year data collected here, 99.6% of the soil moisture variance could be described by less than 0.4% of its Fourier modes. A practical outcome of this energy imbalance in the frequency domain is that the diurnal cycle in ET can be ignored if β1−1 (estimated at 7.6 days from the model) is much larger than 12 hours. The model, however, underestimates the measured Es(f) at very low frequencies (f ≪ β1) and its memory, estimated from the data at 42 days. This underestimation is due to seasonality in ETmax and to a partial decoupling between ET and soil moisture at low frequencies.