Browsing by Author "Reichstein, M."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Biosphere-atmosphere exchange of CO2 in relation to climate: a cross-biome analysis across multiple time scales(2009-10) Stoy, Paul C.; Richardson, Andrew D.; Baldocchi, Dennis D.; Katul, Gabriel G.; Stanovick, J.; Mahecha, M. D.; Reichstein, M.; Detto, Matteo; Law, Beverly E.; Wohlfahrt, Georg; Arriga, N.; Campos, J.; McCaughey, J. H.; Montagnani, Leonardo; Paw U, Kyaw Tha; Sevanto, S.; Williams, MathewThe net ecosystem exchange of CO2 (NEE) varies at time scales from seconds to years and longer via the response of its components, gross ecosystem productivity (GEP) and ecosystem respiration (RE), to physical and biological drivers. Quantifying the relationship between flux and climate at multiple time scales is necessary for a comprehensive understanding of the role of climate in the terrestrial carbon cycle. Orthonormal wavelet transformation (OWT) can quantify the strength of the interactions between gappy eddy covariance flux and micrometeorological measurements at multiple frequencies while expressing time series variance in few energetic wavelet coefficients, offering a low-dimensional view of the response of terrestrial carbon flux to climatic variability. The variability of NEE, GEP and RE, and their co-variability with dominant climatic drivers, are explored with nearly one thousand site-years of data from the FLUXNET global dataset consisting of 253 eddy covariance research sites. The NEE and GEP wavelet spectra were similar among plant functional types (PFT) at weekly and shorter time scales, but significant divergence appeared among PFT at the biweekly and longer time scales, at which NEE and GEP were relatively less variable than climate. The RE spectra rarely differed among PFT across time scales as expected. On average, RE spectra had greater low frequency (monthly to interannual) variability than NEE, GEP and climate. CANOAK ecosystem model simulations demonstrate that "multi-annual" spectral peaks in flux may emerge at low (4+ years) time scales. Biological responses to climate and other internal system dynamics, rather than direct ecosystem response to climate, provide the likely explanation for observed multi-annual variability, but data records must be lengthened and measurements of ecosystem state must be made, and made available, to disentangle the mechanisms responsible for low frequency patterns in ecosystem CO2 exchange.Item Improving land surface models with FLUXNET data(2009-07) Williams, Mathew; Richardson, Andrew D.; Reichstein, M.; Stoy, Paul C.; Peylin, Phili; Verbeeck, Hans; Carvalhais, N.; Jung, Martin; Hollinger, David Y.; Kattge, J.; Leuning, R.; Luo, Yiqi; Tomelleri, E.; Trudinger, C.; Wang, Ying-PingThere is a growing consensus that land surface models (LSMs) that simulate terrestrial biosphere exchanges of matter and energy must be better constrained with data to quantify and address their uncertainties. FLUXNET, an international network of sites that measure the land surface exchanges of carbon, water and energy using the eddy covariance technique, is a prime source of data for model improvement. Here we outline a multi-stage process for "fusing" (i.e. linking) LSMs with FLUXNET data to generate better models with quantifiable uncertainty. First, we describe FLUXNET data availability, and its random and systematic biases. We then introduce methods for assessing LSM model runs against FLUXNET observations in temporal and spatial domains. These assessments are a prelude to more formal model-data fusion (MDF). MDF links model to data, based on error weightings. In theory, MDF produces optimal analyses of the modelled system, but there are practical problems. We first discuss how to set model errors and initial conditions. In both cases incorrect assumptions will affect the outcome of the MDF. We then review the problem of equifinality, whereby multiple combinations of parameters can produce similar model output. Fusing multiple independent and orthogonal data provides a means to limit equifinality. We then show how parameter probability density functions (PDFs) from MDF can be used to interpret model validity, and to propagate errors into model outputs. Posterior parameter distributions are a useful way to assess the success of MDF, combined with a determination of whether model residuals are Gaussian. If the MDF scheme provides evidence for temporal variation in parameters, then that is indicative of a critical missing dynamic process. A comparison of parameter PDFs generated with the same model from multiple FLUXNET sites can provide insights into the concept and validity of plant functional types (PFT) – we would expect similar parameter estimates among sites sharing a single PFT. We conclude by identifying five major model-data fusion challenges for the FLUXNET and LSM communities: (1) to determine appropriate use of current data and to explore the information gained in using longer time series; (2) to avoid confounding effects of missing process representation on parameter estimation; (3) to assimilate more data types, including those from earth observation; (4) to fully quantify uncertainties arising from data bias, model structure, and initial conditions problems; and (5) to carefully test current model concepts (e.g. PFTs) and guide development of new concepts.