Browsing by Author "Saha, R."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Applying indigenous CBPR principles to partnership development in health disparities research(2011-07) Christopher, S.; Saha, R.; Lachapelle, Paul; Jennings, D.; Colclough, Y.; Cooper, C.; Cummins, C.; Eggers, Margaret J.; FourStar, Kris; Harris, K.; Kuntz, Sandra W.; LaFromboise, V.; LaVeaux, Deb; McDonald, T.; Real Bird, James; Rink, Elizabeth; Webster, C.This case study of community and university research partnerships utilizes previously developed principles for conducting research in the context of Native American communities to consider how partners understand and apply the principles in developing community-based participatory research partnerships to reduce health disparities. The 7 partnership projects are coordinated through a National Institutes of Health–funded center and involve a variety of tribal members, including both health care professionals and lay persons and native and nonnative university researchers. This article provides detailed examples of how these principles are applied to the projects and discusses the overarching and interrelated emergent themes of sharing power and building trust.Item Rapid detection of rRNA group I pseudomonads in contaminated metalworking fluids and biofilm formation by fluorescent in situ hybridization(2012-05) Saha, R.; Donofrio, R. S.; Goeres, Darla M.; Bagley, S. T.Metalworking fluids (MWFs), used in different machining operations, are highly prone to microbial degradation. Microbial communities present in MWFs lead to biofilm formation in the MWF systems, which act as a continuous source of contamination. Species of rRNA group I Pseudomonas dominate in contaminated MWFs. However, their actual distribution is typically underestimated when using standard culturing techniques as most fail to grow on the commonly used Pseudomonas Isolation Agar. To overcome this, fluorescent in situ hybridization (FISH) was used to study their abundance along with biofilm formation by two species recovered from MWFs, Pseudomonas fluorescens MWF-1 and the newly described Pseudomonas oleovorans subsp. lubricantis. Based on 16S rRNA sequences, a unique fluorescent molecular probe (Pseudo120) was designed targeting a conserved signature sequence common to all rRNA group I Pseudomonas. The specificity of the probe was evaluated using hybridization experiments with whole cells of different Pseudomonas species. The probe's sensitivity was determined to be 103 cells/ml. It successfully detected and enumerated the abundance and distribution of Pseudomonas indicating levels between 3.2 (±1.1)×106 and 5.0 (±2.3)×106 cells/ml in four different industrial MWF samples collected from three different locations. Biofilm formation was visualized under stagnant conditions using high and low concentrations of cells for both P. fluorescens MWF-1 and P. oleovorans subsp. lubricantis stained with methylene blue and Pseudo120. On the basis of these observations, this molecular probe can be successfully be used in the management of MWF systems to monitor the levels and biofilm formation of rRNA group I pseudomonads.