Browsing by Author "SanClements, M. D."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Biogeophysical properties of an expansive Antarctic supraglacial stream(2017) SanClements, M. D.; Michael, D.; Smith, Heidi J.; Foreman, Christine M.; Tedesco, Marco; Chin, Yu-PingSupraglacial streams are important hydrologic features in glaciated environments as they are conduits for the transport of aeolian debris, meltwater, solutes and microbial communities. We characterized the basic geomorphology, hydrology and biogeochemistry of the Cotton Glacier supraglacial stream located in the McMurdo Dry Valleys of Antarctica. The distinctive geomorphology of the stream is driven by accumulated aeolian sediment from the Transantarctic Mountains, while solar radiation and summer temperatures govern melt in the system. The hydrologic functioning of the Cotton Glacier stream is largely controlled by the formation of ice dams that lead to vastly different annual flow regimes and extreme flushing events. Stream water is chemically dilute and lacks a detectable humic signature. However, the fluorescent signature of dissolved organic matter (DOM) in the stream does demonstrate an extremely transitory red-shifted signal found only in near-stream sediment leachates and during the initial flushing of the system at the onset of flow. This suggests that episodic physical flushing drives pulses of DOM with variable quality in this stream. This is the first description of a large Antarctic supraglacial stream and our results provide evidence that the hydrology and geomorphology of supraglacial streams drive resident microbial community composition and biogeochemical cyclingItem Microbial growth under humic-free conditions in a supraglacial stream system on the Cotton Glacier, Antarctica(2013-07) Foreman, Christine M.; Cory, R. M.; Morris, Cindy E.; SanClements, M. D.; Smith, Heidi J.; Lisle, John T.; Miller, P. L.; Chin, Yu-Ping; McKnight, Diane M.During the austral summers of 2004 and 2009, we sampled a supraglacial stream on the Cotton Glacier, Antarctica. The stream dissolved organic matter (DOM) was low (44–48 µ M C) and lacked detectable humic fluorescence signatures. Analysis of the excitation emissions matrices (EEMs) indicated that amino-acid fluorophores dominated, consistent with DOM of microbial origin, with little humic-like fluorescence. In most aquatic ecosystems, humic DOM attenuates harmful UV radiation and its absence may represent an additional stressor influencing the microbial community. Nonetheless, the stream contained an active microbial assemblage with bacterial cell abundances from 2.94 x 104 to 4.97 x 105 cells ml-1, and bacterial production ranging from 58.8 to 293.2 ng C l-1 d-1. Chlorophyll-a concentrations ranged from 0.3 to 0.53 µ g 1-1 indicating that algal phototrophs were the probable source of the DOM. Microbial isolates produced a rainbow of pigment colors, suggesting adaptation to stress, and were similar to those from other cryogenic systems (Proteobacteria and Bacteroidetes lineages). Supraglacial streams provide an example of contemporary microbial processes on the glacier surface and a natural laboratory for studying microbial adaptation to the absence of humics.Item Relationship between dissolved organic matter quality and microbial community(2018-07) Smith, Heidi J.; Dieser, Markus; McKnight, Diane M.; SanClements, M. D.; Foreman, Christine M.Vast expanses of Earth’s surface are covered by ice, with microorganisms in these systems affecting local and global biogeochemical cycles. We examined microbial assemblages from habitats fed by glacial meltwater within the McMurdo Dry Valleys, Antarctica and on the west Greenland Ice Sheet (GrIS), evaluating potential physicochemical factors explaining trends in community structure. Microbial assemblages present in the different Antarctic dry valley habitats were dominated by Sphingobacteria andFlavobacteria, while Gammaproteobacteria and Sphingobacteria prevailed in west GrIS supraglacial environments. Microbial assemblages clustered by location (Canada Glacier, Cotton Glacier and west GrIS) and were separated by habitat type (i.e. ice, cryoconite holes, supraglacial lakes, sediment and stream water). Community dissimilarities were strongly correlated with dissolved organic matter (DOM) quality. Microbial meltwater assemblages were most closely associated with different protein-like components of the DOM pool. Microbes in environments with mineral particles (i.e. stream sediments and cryoconite holes) were linked to DOM containing more humic-like fluorescence. Our results demonstrate the establishment of distinct microbial communities within ephemeral glacial meltwater habitats, with DOM-microbe interactions playing an integral role in shaping communities on local and polar spatial scales.