Browsing by Author "Scasta, John D."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Climate extremes, vegetation change, and de-coupling of interactive fire-grazing processes exacerbate fly parasitism of cattle(2017-02) Scasta, John D.; Talley, Justin L.; Engle, David M.; Debinski, Diane M.We assessed local horn fly (Haematobia irritans L.) and face fly (Musca autumnalis De Geer) communities on cattle in 2012 and 2013 relative to vegetation and climate data to understand how parasitism of cattle is influenced by change in climate and vegetation structure. We compared heterogeneity management using spatially and temporally discrete fires (i.e., patch-burning one-third of a pasture annually) to homogeneity management (i.e., burning entire pasture in 2012 then no burning in 2013), with cattle grazing all years in both treatments. Predicted emergence of horn flies and face flies was 24 and 34 d earlier in 2012 associated with earlier spring warming, a significant deviation from the five-year mean. Intraannual horn fly dynamics were explained by concurrent high ambient air temperature the day of observations, but face flies were explained by low ambient air temperatures and dry conditions 3 wk before observations. Importance values of information for the theoretic models including fire treatments ranged from 0.89 to 1, indicating that both horn flies and face flies are sensitive to habitat alterations and fire-driven animal movements. Ordination indicates herds on unburned pastures were dissimilar to herds on pastures burned with patchy fires or pastures burned completely and species-specific fly responses to different vegetation structure metrics. For example, horn flies were correlated with vegetation visual obstruction, and face flies were correlated with woody plant cover. Vegetation structure may be as important as climate in driving the dynamics of fly parasites of cattle.Item Constraints to restoring fire and grazing ecological processes to optimize grassland vegetation structural diversity(2016-10) Scasta, John D.; Duchardt, Courtney J.; Engle, David M.; Miller, James R.; Debinski, Diane M.; Harr, Ryan N.Extirpation of the ecosystem engineer (bison) and its interaction with fire, coupled with the utilitarian concept of moderate grazing, have contributed to homogenization of grassland habitat in North America. Although cattle may serve as a proxy for bison, combining fire with cattle grazing has been uncommon and to date managers have not always successfully applied cattle and controlled burns as tools to manipulate grassland vegetation heterogeneity and increase habitat diversity. Using an information-theoretic approach, we assessed factors constraining the fire-grazing interaction ecological process to engineer habitat structure of grasslands via patch-burn grazing. We assessed how grazing, fire, and biotic and abiotic features in tallgrass prairie influenced establishment and maintenance of low vegetative structure in burned patches, the positive feedback driving the fire-grazing interaction, and subsequent structural heterogeneity across a pasture. Four pastures were divided into three patches with a different patch burned annually in March/April from 2007 to 2013. Cattle were stocked from light to heavy (1.1–4.4 AUM/ha) from May to October (∼150 days) with access to the entire pasture. We hypothesized that the exotic C3 grass tall fescue (Schedonorus arundinaceus), lag-time between burning date and the date cattle were put into experimental pastures, and burn date would be the constraining factors. However, the most informative model included stocking rate, date of burn completion, and precipitation. The lightest cattle stocking rate did not establish low vegetative structure in the burn patch, which resulted in the lowest heterogeneity among patches. The heaviest cattle stocking rate established but did not maintain low vegetative structure in the burn patch. The intermediate cattle stocking rate maintained the lowest vegetative structure in the burn patch and the greatest heterogeneity among patches, i.e., the best efficacy of patch-burn grazing to engineer habitat structural heterogeneity. The relationships of stocking rate to burn patch vegetative structure and to landscape heterogeneity were both quadratic and were both optimized at intermediate stocking rate.Item Fire induced reproductive mechanisms of a Symphoricarpos (Caprifoliaceae) shrub after dormant season burning(2005-07) Scasta, John D.; Engle, David M.; Harr, Ryan N.; Debinski, Diane M."Background Symphoricarpos, a genus of the Caprifoliaceae family, consists of about 15 species of clonal deciduous shrubs in North America and 1 species endemic to China. In North American tallgrass prairie, Symphoricarpos orbiculatus (buckbrush) is the dominant shrub often forming large colonies via sexual and asexual reproductive mechanisms. Symphoricarpos shrubs, in particular S. orbiculatus, use a unique sexual reproductive mechanism known as layering where vertical stems droop and the tips root upon contact with the soil. Because of conflicting societal values of S. orbiculatus for conservation and agriculture and the current attempt to restore historical fire regimes, there is a need for basic research on the biological response of S. orbiculatus to anthropogenic burning regimes. Results From 2007 through 2013 we applied prescribed fires in the late dormant season on grazed pastures in the Grand River Grasslands of Iowa. From 2011 to 2013, we measured how S. orbiculatus basal resprouting and layering stems were affected by patchy fires on grazed pastures, complete pasture fires on grazed pastures or fire exclusion without grazing for more than three years. We measured ramet height, ramet canopy diameter, stems per ramet, ramets per 100 m2, and probability of new layering stems 120 days after fire. Height in burned plots was lower than unburned plots but S. orbiculatus reached ~ 84% of pre-burn height 120 days after fire. Stems per ramet were 2x greater in the most recently burned plots due to basal re-sprouting. Canopy diameter and density of ramets was not affected by time since fire, but burned pastures had marginally lower densities than plots excluded from fire (P = 0.07). Fire triggered new layering stems and no new layering stems were found in plots excluded from fire. Conclusions The mechanisms of both basal sprouting and aerial layering after fire suggest S. orbiculatus is tolerant to dormant season fires. Furthermore, dormant season fires, regardless if they were patchy fires or complete pasture fires, did not result in mortality of S. orbiculatus. Dormant season fires can reduce S. orbiculatus structural dominance and maintain lower ramet densities but also trigger basal resprouting and layering."Item Using Regional Climate Projections to Guide Grassland Community Restoration in the Face of Climate Change(2017-05) Kane, Kristin; Debinski, Diane M.; Anderson, Chris; Scasta, John D.; Engle, David M.; Miller, James R.Grassland loss has been extensive worldwide, endangering the associated biodiversity and human well-being that are both dependent on these ecosystems. Ecologists have developed approaches to restore grassland communities and many have been successful, particularly where soils are rich, precipitation is abundant, and seeds of native plant species can be obtained. However, climate change adds a new filter needed in planning grassland restoration efforts. Potential responses of species to future climate conditions must also be considered in planning for long-term resilience. We demonstrate this methodology using a site-specific model and a maximum entropy approach to predict changes in habitat suitability for 33 grassland plant species in the tallgrass prairie region of the U.S. using the Intergovernmental Panel on Climate Change scenarios A1B and A2. The A1B scenario predicts an increase in temperature from 1.4 to 6.4°C, whereas the A2 scenario predicts temperature increases from 2 to 5.4°C and much greater CO2 emissions than the A1B scenario. Both scenarios predict these changes to occur by the year 2100. Model projections for 2040 under the A1B scenario predict that all but three modeled species will lose ~90% of their suitable habitat. Then by 2080, all species except for one will lose ~90% of their suitable habitat. Models run using the A2 scenario predict declines in habitat for just four species by 2040, but models predict that by 2080, habitat suitability will decline for all species. The A2 scenario appears based on our results to be the less severe climate change scenario for our species. Our results demonstrate that many common species, including grasses, forbs, and shrubs, are sensitive to climate change. Thus, grassland restoration alternatives should be evaluated based upon the long-term viability in the context of climate change projections and risk of plant species loss.