Browsing by Author "Schaible, George A."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Characterization of an Endophytic Gloeosporium sp. and Its Novel Bioactivity with “Synergistans”(2014-12) Schaible, George A.; Strobel, Gary A.; Mends, Morgan Tess; Geary, Brad; Sears, JoeGloeosporium sp. (OR-10) was isolated as an endophyte of Tsuga heterophylla (Western hemlock). Both ITS and 18S sequence analyses indicated that the organism best fits either Hypocrea spp. or Trichoderma spp., but neither of these organisms possess conidiophores associated with acervuli, in which case the endophytic isolate OR-10 does. Therefore, the preferred taxonomic assignment was primarily based on the morphological features of the organism as one belonging to the genus Gloeosporium sp. These taxonomic observations clearly point out that limited ITS and 18S sequence information can be misleading when solely used in making taxonomic assignments. The volatile phase of this endophyte was active against a number of plant pathogenic fungi including Phytophthora palmivora, Rhizoctonia solani, Ceratocystis ulmi, Botrytis cinerea, and Verticillium dahliae. Among several terpenes and furans, the most abundantly produced compound in the volatile phase was 6-pentyl-2H-pyran-2-one, a compound possessing antimicrobial activities. When used in conjunction with microliter amounts of any in a series of esters or isobutyric acid, an enhanced inhibitory response occurred with each test fungus that was greater than that exhibited by Gloeosporium sp. or the compounds tested individually. Compounds behaving in this manner are hereby designated “synergistans.” An expression of the “median synergistic effect,” under prescribed conditions, has been termed the mSE50. This value describes the amount of a potential synergistan that is required to yield an additional median 50 % inhibition of a target organism. In this report, the mSE50s are reported for a series of esters and isobutyric acid. The results indicated that isoamyl acetate, allyl acetate, and isobutyric acid generally possessed the lowest mSE50 values. The value and potential importance of these microbial synergistic effects to the microbial environment are also discussed.Item Characterization of Novel Endophytic Isolate Or10-4 and Analysis of Increased Bio-Activity by Addition of Esters(2013-03) Schaible, George A.; Strobel, Gary A.Today there is thought to be over a million species of fungi to exist and approximately 75,000 of those have been scientifically identified, leaving an enormous amount of species still unidentified and under-researched. The work done in Dr. Gary Strobel’s lab focuses on the collection of biologically diverse plant material for isolation and classification of fungal endophytic species. Research has shown that these species of endophytes contain novel characteristics that make them of high interest for further research and analysis. Or10-4 is an endophytic isolate from the Canadian hemlock that produces a valuable volatile organic compound (VOC), 6-Pentyl-2H-pyran-2-one, which can be used as an anti-pathogen for crop plants to be applied in large agricultural settings. Analysis of scanning electron microscope (SEM) pictures from spore structures have indicated that Or10-4 is a new species to be taxonomically classified calling for complete rDNA sequencing. Furthermore, tests done on Or10-4 with the addition of esters in bioactivity tests against pathogenic species has shown increased inhibition. The chemistry of the interaction between the esters and VOC’s is still being analyzed.Item Correlative SIP-FISH-Raman-SEM-NanoSIMS links identity, morphology, biochemistry, and physiology of environmental microbes(Springer Science and Business Media LLC, 2022-06) Schaible, George A.; Kohtz, Anthony J.; Cliff, John; Hatzenpichler, RolandMicroscopic and spectroscopic techniques are commonly applied to study microbial cells but are typically used on separate samples, resulting in population-level datasets that are integrated across different cells with little spatial resolution. To address this shortcoming, we developed a workflow that correlates several microscopic and spectroscopic techniques to generate an in-depth analysis of individual cells. By combining stable isotope probing (SIP), fluorescence in situ hybridization (FISH), scanning electron microscopy (SEM), confocal Raman microspectroscopy (Raman), and nano-scale secondary ion mass spectrometry (NanoSIMS), we illustrate how individual cells can be thoroughly interrogated to obtain information about their taxonomic identity, structure, physiology, and metabolic activity. Analysis of an artificial microbial community demonstrated that our correlative approach was able to resolve the activity of single cells using heavy water SIP in conjunction with Raman and/or NanoSIMS and establish their taxonomy and morphology using FISH and SEM. This workflow was then applied to a sample of yet uncultured multicellular magnetotactic bacteria (MMB). In addition to establishing their identity and activity, backscatter electron microscopy (BSE), NanoSIMS, and energy-dispersive X-ray spectroscopy (EDS) were employed to characterize the magnetosomes within the cells. By integrating these techniques, we demonstrate a cohesive approach to thoroughly study environmental microbes on a single-cell level.Item Correlative SIP-FISH-Raman-SEM-NanoSIMS links identity, morphology, biochemistry, and physiology of environmental microbes(2022-06) Schaible, George A.; Kohtz, Anthony J.; Cliff, John; Hatzenpichler, RolandMicroscopic and spectroscopic techniques are commonly applied to study microbial cells but are typically used on separate samples, resulting in population-level datasets that are integrated across different cells with little spatial resolution. To address this shortcoming, we developed a workflow that correlates several microscopic and spectroscopic techniques to generate an in-depth analysis of individual cells. By combining stable isotope probing (SIP), fluorescence in situ hybridization (FISH), scanning electron microscopy (SEM), confocal Raman microspectroscopy (Raman), and nano-scale secondary ion mass spectrometry (NanoSIMS), we illustrate how individual cells can be thoroughly interrogated to obtain information about their taxonomic identity, structure, physiology, and metabolic activity. Analysis of an artificial microbial community demonstrated that our correlative approach was able to resolve the activity of single cells using heavy water SIP in conjunction with Raman and/or NanoSIMS and establish their taxonomy and morphology using FISH and SEM. This workflow was then applied to a sample of yet uncultured multicellular magnetotactic bacteria (MMB). In addition to establishing their identity and activity, backscatter electron microscopy (BSE), NanoSIMS, and energy-dispersive X-ray spectroscopy (EDS) were employed to characterize the magnetosomes within the cells. By integrating these techniques, we demonstrate a cohesive approach to thoroughly study environmental microbes on a single-cell level.Item The Paleobiosphere: a novel device for the in vivo testing of hydrocarbon producing-utilizing microorganisms(2013-04) Strobel, Gary A.; Booth, Eric; Schaible, George A.; Mends, Morgan Tess; Sears, Joe; Geary, BradThe construction and testing of a unique instrument, the Paleobiosphere, which mimics some of the conditions of the ancient earth, is described. The instrument provides an experimental testing system for determining if certain microbes, when provided an adequate environment, can degrade biological materials to produce fuel-like hydrocarbons in a relatively short time frame that become trapped by the shale. The conditions selected for testing included a particulate Montana shale (serving as the “Trap Shale”), plant materials (leaves and stems of three extant species whose origins are in the late Cretaceous), a water-circulating system, sterile air, and a specially designed Carbotrap through which all air was passed as exhaust and volatile were hydrocarbons trapped. The fungus for initial testing was Annulohypoxylon sp., isolated as an endophyte of Citrus aurantifolia. It produces, in solid and liquid media, a series of hydrocarbon-like molecules. Some of these including 1,8-cineole, 2-butanone, propanoic acid, 2-methyl-, methyl ester, benzene (1-methylethyl)-, phenylethyl alcohol, benzophenone and azulene, 1,2,3,5,6,7,8,8a-octahydro-1,4-dimethyl-7-(1-methylethenyl), [1S-(1α,7α,8aβ)]. These were the key signature compounds used in an initial Paleobiosphere test. After 3 weeks, incubation, the volatiles associated with the harvested “Trap Shale” included each of the signature substances as well as other fungal-associated products: some indanes, benzene derivatives, some cyclohexanes, 3-octanone, naphthalenes and others. The fungus thus produced a series of “Trap Shale” products that were representative of each of the major classes of hydrocarbons in diesel fuel (Mycodiesel). Initial tests with the Paleobiosphere offer some evidence for a possible origin of hydrocarbons trapped in bentonite shale. Thus, with modifications, numerous other tests can also be designed for utilization in the Paleobiosphere.