Browsing by Author "Scholl, Eric A."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item DOM composition alters ecosystem function during microbial processing of isolated sources(2019-01) D'Andrilli, Juliana; Junker, James R.; Smith, Heidi J.; Scholl, Eric A.; Foreman, Christine M.Dynamics of dissolved organic matter (DOM) in ecosystems are controlled by a suite of interacting physical, chemical, and biological factors. Growing recognition of the associations between microbial communities and metabolism and intrinsic DOM characteristics, highlight the potential importance of microbe-DOM relationships to modulate the role and fate of DOM, yet these relationships are difficult to isolate because they often operate across confounding environmental gradients. In a controlled laboratory incubation (44 days), we integrated DOM bulk and molecular characterization, bacterial abundances, microbial assemblage composition, nutrient concentrations, and cellular respiration to discern the structural dynamics of biological processing among DOM sources from different allochthonous litters (grass, deciduous leaves, and evergreen needles). We identified two periods, consistent among DOM sources, where processing dynamics differed. Further, bulk fluorescent analyses showed shifts from low to high excitation and emission wavelengths, indicating the biological production of more complex/degraded materials over time. Molecular level analyses revealed similar temporal patterns among DOM sources in the production and consumption of individual chemical components varying in reactivity and heteroatomic content. Despite these similarities, total carbon (C) removed and carbon dioxide (CO2) accumulation differed by ~ 20% and 25% among DOM sources. This range in C processing was apparently tied to key chemical properties of the DOM (e.g., initial DOM composition, N content, and labile nature) as well as differential reorganization of the microbial populations that decomposed the DOM. We conclude that the production, transformation, and consumption of C in aquatic ecosystems is strongly dependent on the source and character of DOM as well as the structure of the microbial communities present, both of which change as DOM is processed over time. It is crucial that stream C processing models represent this complexity accurately.Item Uncovering process domains in large rivers: Patterns and potential drivers of benthic substrate heterogeneity in two North American riverscapes(2021-02) Scholl, Eric A.; Cross, Wyatt F.; Baxter, Colden V.; Guy, Christopher S.Identifying and understanding functional process domains (sensu Montgomery, 1999) in rivers is paramount for linking the physical habitat template to ecosystem structure and function. To date, efforts to do this have been rare, especially in large rivers, as they require appropriate tools for quantifying habitat heterogeneity with fine-scale resolution across broad spatial extents. In this study, we used side-scan sonar technology to map riverbed substrate at six sites in the Yellowstone and Missouri rivers. Substrate maps were then analyzed and visualized using geospatial analysis to relate fine-grained spatial substrate patterns to process domain structure. Our findings revealed two distinct nested domains of substrate patchiness, suggesting that different factors are responsible for shaping patterns of substrate at different scales. Although small-scale patchiness in substrate was likely driven by internal, or autogenic, physical processes, patterns at larger segment extents (>3 km) were often driven by abrupt transitions in habitat related to exogenous factors such as lateral erosion of talus, tributary inputs, and bank armoring. Additionally, we found that heterogeneity in benthic substrate increased with spatial extent at all of our study sites; however, this relationship was lower in the Missouri River, which is altered by impoundment. Our study represents one of the first efforts to relate benthic habitat heterogeneity to nested process domain structure in large riverscapes, and offers a unique perspective for linking landscape processes, geomorphological habitat heterogeneity, and biological structure and function in large rivers.