Browsing by Author "Shi, Kaixiang"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Microbial Oxidation of Arsenite: Regulation, Chemotaxis, Phosphate Metabolism and Energy Generation(2020-09) Shi, Kaixiang; Wang, Qian; Wang, GejiaoArsenic (As) is a metalloid that occurs widely in the environment. The biological oxidation of arsenite [As(III)] to arsenate [As(V)] is considered a strategy to reduce arsenic toxicity and provide energy. In recent years, research interests in microbial As(III) oxidation have been growing, and related new achievements have been revealed. This review focuses on the highlighting of the novel regulatory mechanisms of bacterial As(III) oxidation, the physiological relevance of different arsenic sensing systems and functional relationship between microbial As(III) oxidation and those of chemotaxis, phosphate uptake, carbon metabolism and energy generation. The implication to environmental bioremediation applications of As(III)-oxidizing strains, the knowledge gaps and perspectives are also discussed.Item Phosphate starvation response controls genes required to synthesize the phosphate analog arsenate(2018-05) Wang, Qian; Kang, Yoon-Suk; Alowaifeer, Abdullah; Shi, Kaixiang; Fan, Xia; Wang, Lu; Jetter, Jonathan; Bothner, Brian; Wang, Gejiao; McDermott, Timothy R.Environmental arsenic poisoning affects roughly 200 million people worldwide. The toxicity and mobility of arsenic in the environment is significantly influenced by microbial redox reactions, with arsenite (AsIII ) being more toxic than arsenate (AsV ). Microbial oxidation of AsIII to AsV is known to be regulated by the AioXSR signal transduction system and viewed to function for detoxification or energy generation. Here, we show that AsIII oxidation is ultimately regulated by the phosphate starvation response (PSR), requiring the sensor kinase PhoR for expression of the AsIII oxidase structural genes aioBA. The PhoRB and AioSR signal transduction systems are capable of transphosphorylation cross-talk, closely integrating AsIII oxidation with the PSR. Further, under PSR conditions, AsV significantly extends bacterial growth and accumulates in the lipid fraction to the apparent exclusion of phosphorus. This could spare phosphorus for nucleic acid synthesis or triphosphate metabolism wherein unstable arsenic esters are not tolerated, thereby enhancing cell survival potential. We conclude that AsIII oxidation is logically part of the bacterial PSR, enabling the synthesis of the phosphate analog AsV to replace phosphorus in specific biomolecules or to synthesize other molecules capable of a similar function, although not for total replacement of cellular phosphate.