Browsing by Author "Smith, Phillip D."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item CD103 (aE integrin) undergoes endosomal trafficking in human dendritic cells, but does not mediate epithelial adhesion(2018-12) Swain, Steve; Roe, Mandi M.; Sebrell, T. Andrew; Sidar, Barkan; Dankoff, Jennifer; VanAusdol, Rachel; Smythies, Lesley E.; Smith, Phillip D.; Bimczok, DianeDendritic cell (DC) expression of CD103, the α subunit of αEβ7 integrin, is thought to enable DC interactions with E-cadherin-expressing gastrointestinal epithelia for improved mucosal immunosurveillance. In the stomach, efficient DC surveillance of the epithelial barrier is crucial for the induction of immune responses to H. pylori, the causative agent of peptic ulcers and gastric cancer. However, gastric DCs express only low levels of surface CD103, as we previously showed. We here tested the hypothesis that intracellular pools of CD103 in human gastric DCs can be redistributed to the cell surface for engagement of epithelial cell-expressed E-cadherin to promote DC-epithelial cell adhesion. In support of our hypothesis, immunofluorescence analysis of tissue sections showed that CD103+ gastric DCs were preferentially localized within the gastric epithelial layer. Flow cytometry and imaging cytometry revealed that human gastric DCs expressed intracellular CD103, corroborating our previous findings in monocyte-derived DCs (MoDCs). Using confocal microscopy, we show that CD103 was present in endosomal compartments, where CD103 partially co-localized with clathrin, early endosome antigen-1 and Rab11, suggesting that CD103 undergoes endosomal trafficking similar to β1 integrins. Dynamic expression of CD103 on human MoDCs was confirmed by internalization assay. To analyze whether DC-expressed CD103 promotes adhesion to E-cadherin, we performed adhesion and spreading assays on E-cadherin-coated glass slides. In MoDCs generated in the presence of retinoic acid, which express increased CD103, intracellular CD103 significantly redistributed toward the E-cadherin-coated glass surface. However, DCs spreading and adhesion did not differ between E-cadherin-coated slides and slides coated with serum alone. In adhesion assays using E-cadherin-positive HT-29 cells, DC binding was significantly improved by addition of Mn2+ and decreased in the presence of EGTA, consistent with the dependence of integrin-based interactions on divalent cations. However, retinoic acid failed to increase DC adhesion, and a CD103 neutralizing antibody was unable to inhibit DC binding to the E-cadherin positive cells. In contrast, a blocking antibody to DC-expressed E-cadherin significantly reduced DC binding to the epithelium. Overall, these data indicate that CD103 engages in DC-epithelial cell interactions upon contact with epithelial E-cadherin, but is not a major driver of DC adhesion to gastrointestinal epithelia.Item Differential regulation of CD103 (alphaE integrin) expression in human dendritic cells by retinoic acid and Toll-like receptor ligands(2017-05) Roe, Mandi M.; Swain, Steve; Sebrell, T. Andrew; Sewell, Marisa A.; Collins, Madison M.; Perrino, Brian A.; Smith, Phillip D.; Smythies, Lesley E.; Bimczok, DianeCD103 (alphaE integrin) is an important dendritic cell (DC) marker that characterizes functionally distinct DC subsets in mice and humans. However, the mechanism by which CD103 expression is regulated in human DCs and the role of CD103 for DC function are not very well understood. Here, we show that retinoic acid (RA) treatment of human monocyte-derived DCs (MoDCs) increased the ability of the DCs to synthesize RA and induced MoDC expression of CD103 and beta7 at the mRNA and protein level. In contrast, RA was unable to induce the expression of CD103 in primary human DCs isolated from the gastric mucosa. Inhibition of TGF-beta signaling in MoDCs down-regulated RA-induced CD103 expression, indicating that TGF-beta-dependent pathways contribute to the induction of CD103. Conversely, when RA-treated MoDCs were stimulated with live Helicobacter pylori, commensal bacteria, LPS, or a TLR2 agonist, the RA-induced up-regulation of CD103 and beta7 integrin expression was completely abrogated. To determine whether CD103 expression impacts DC priming of CD4+ T cells, we next investigated the ability of CD103+ and CD103─ DCs to induce mucosal homing and T cell proliferation. Surprisingly, RA treatment of DCs enhanced both alpha4beta7 expression and proliferation in cocultured T cells, but no difference was seen between RA-treated CD103+ and CD103─ DCs. In summary, our data demonstrate that RA, bacterial products, and the tissue environment all contribute to the regulation of CD103 on human DCs and that DC induction of mucosal homing in T cells is RA dependent but not CD103 dependent.