Browsing by Author "Spencer, Robert G. M."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Enhanced trace element mobilization by Earth’s ice sheets(Proceedings of the National Academy of Sciences, 2020-11) Hawkings, Jon R.; Skidmore, Mark L.; Wadham, Jemma L.; Priscu, John C.; Morton, Peter L.; Hatton, Jade E.; Gardner, Christopher B.; Kohler, Tyler J.; Stibal, Marek; Bagshaw, Elizabeth A.; Steigmeyer, August; Barker, Joel; Dore, John E.; Lyons, W. Berry; Tranter, Martyn; Spencer, Robert G. M.Trace elements sustain biological productivity, yet the significance of trace element mobilization and export in subglacial runoff from ice sheets is poorly constrained at present. Here, we present size-fractionated (0.02, 0.22, and 0.45 µm) concentrations of trace elements in subglacial waters from the Greenland Ice Sheet (GrIS) and the Antarctic Ice Sheet (AIS). Concentrations of immobile trace elements (e.g., Al, Fe, Ti) far exceed global riverine and open ocean mean values and highlight the importance of subglacial aluminosilicate mineral weathering and lack of retention of these species in sediments. Concentrations are higher from the AIS than the GrIS, highlighting the geochemical consequences of prolonged water residence times and hydrological isolation that characterize the former. The enrichment of trace elements (e.g., Co, Fe, Mn, and Zn) in subglacial meltwaters compared with seawater and typical riverine systems, together with the likely sensitivity to future ice sheet melting, suggests that their export in glacial runoff is likely to be important for biological productivity. For example, our dissolved Fe concentration (20,900 nM) and associated flux values (1.4 Gmol y−1) from AIS to the Fe-deplete Southern Ocean exceed most previous estimates by an order of magnitude. The ultimate fate of these micronutrients will depend on the reactivity of the dominant colloidal size fraction (likely controlled by nanoparticulate Al and Fe oxyhydroxide minerals) and estuarine processing. We contend that ice sheets create highly geochemically reactive particulates in subglacial environments, which play a key role in trace elemental cycles, with potentially important consequences for global carbon cycling.Item Stream Dissolved Organic Matter in Permafrost Regions Shows Surprising Compositional Similarities but Negative Priming and Nutrient Effects(American Geophysical Union, 2021-01) Wologo, Ethan; Shakil, Sarah; Zolkos, Scott; Textor, Sadie; Ewing, Stephanie; Klassen, Jane; Spencer, Robert G. M.; Podgorski, David C.; Tank, Suzanne E.; Baker, Michelle A.; O'Donnell, Jonathan A.; Wickland, Kimberly P.; Foks, Sydney S. W.; Zarnetske, Jay P; Lee‐Cullin, Joseph; Liu, Futing; Yang, Yuanhe; Kortelainen, Pirkko; Kolehmainen, Jaana; Dean, Joshua F.; Vonk, Jorien E.; Holmes, Robert M.; Pinay, Gilles; Powell, Michaela M.; Howe, Jansen; Frei, Rebecca J.; Bratsman, Samuel P.; Abbott, Benjamin W.Permafrost degradation is delivering bioavailable dissolved organic matter (DOM) and inorganic nutrients to surface water networks. While these permafrost subsidies represent a small portion of total fluvial DOM and nutrient fluxes, they could influence food webs and net ecosystem carbon balance via priming or nutrient effects that destabilize background DOM. We investigated how addition of biolabile carbon (acetate) and inorganic nutrients (nitrogen and phosphorus) affected DOM decomposition with 28‐day incubations. We incubated late‐summer stream water from 23 locations nested in seven northern or high‐altitude regions in Asia, Europe, and North America. DOM loss ranged from 3% to 52%, showing a variety of longitudinal patterns within stream networks. DOM optical properties varied widely, but DOM showed compositional similarity based on Fourier transform ion cyclotron resonance mass spectrometry (FT‐ICR MS) analysis. Addition of acetate and nutrients decreased bulk DOM mineralization (i.e., negative priming), with more negative effects on biodegradable DOM but neutral or positive effects on stable DOM. Unexpectedly, acetate and nutrients triggered breakdown of colored DOM (CDOM), with median decreases of 1.6% in the control and 22% in the amended treatment. Additionally, the uptake of added acetate was strongly limited by nutrient availability across sites. These findings suggest that biolabile DOM and nutrients released from degrading permafrost may decrease background DOM mineralization but alter stoichiometry and light conditions in receiving waterbodies. We conclude that priming and nutrient effects are coupled in northern aquatic ecosystems and that quantifying two‐way interactions between DOM properties and environmental conditions could resolve conflicting observations about the drivers of DOM in permafrost zone waterways.