Browsing by Author "Tauc, Martin Jan"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Combining spectral and polarimetric methods to classify cloud thermodynamic phase(Montana State University - Bozeman, College of Engineering, 2019) Tauc, Martin Jan; Chairperson, Graduate Committee: Joseph A. Shaw; David W. Riesland, Laura M. Eshelman, Wataru Nakagawa and Joseph A. Shaw were co-authors of the article, 'Radiance ratios for CTP discrimination' submitted to the journal 'Journal of applied remote sensing' which is contained within this thesis.; Wataru Nakagawa and Joseph A. Shaw were co-authors of the article, 'The SWIR three-channel polarimeter for cloud thermodynamic phase detection' in the journal 'Optical engineering' which is contained within this thesis.Cloud thermodynamic phase--whether a cloud is composed of spherical water droplets or polyhedral ice crystals--is an important parameter for optical communication with space-based instruments, remote sensing of the atmosphere, and, perhaps most importantly, understanding weather and climate. Although some methods exist to detect the phase of clouds, there is still a need for passive remote sensing of cloud thermodynamic phase due to its low-cost, scalability, and ease of use. Two methods for cloud thermodynamic phase classification employ spectral radiance ratios in the short-wave infrared, and the S 1 Stokes parameter, a polarimetric quantity. In this dissertation, the combination of the two methods is realized in an instrument called the short-wave infrared three-channel polarimeter. The coalescence of radiance ratios in the short-wave infrared and polarization channels oriented parallel and perpendicular to the scattering plane provides better classification of cloud phase than either method independently. Despite the improvement, the low-cost system suffered from hardware and software limitations, which caused an increase in noise and polarimetric artifacts. These errors are analyzed and a subset of low-noise data shows even better classification ability. All together, the results attained from the deployment of the polarimeter in early 2019 showed promise that the combination of the two methods is an improvement over past techniques.Item Digital all-sky polarization imaging of the total solar eclipse on 21 August 2017 in Rexburg, Idaho, USA(2020-07) Eshelman, Laura M.; Tauc, Martin Jan; Hashimoto, Taiga; Gillis, Kendra; Weiss, William; Stanley, Bryan; Hooser, Preston; Shaw, Glenn E.; Shaw, Joseph A.All-sky polarization images were measured from sunrise to sunset and during a cloud-free totality on 21 August 2017 in Rexburg, Idaho using two digital three-camera all-sky polarimeters and a time-sequential liquid-crystal-based all-sky polarimeter. Twenty-five polarimetric images were recorded during totality, revealing a highly dynamic evolution of the distribution of skylight polarization, with the degree of linear polarization becoming nearly zenith-symmetric by the end of totality. The surrounding environment was characterized with an infrared cloud imager that confirmed the complete absence of clouds during totality, an AERONET solar radiometer that measured aerosol properties, a portable weather station, and a hand-held spectrometer with satellite images that measured surface reflectance at and near the observation site. These observations confirm that previously observed totality patterns are general and not unique to those specific eclipses. The high temporal image resolution revealed a transition of a neutral point from the zenith in totality to the normal Babinet point just above the Sun after third contact, providing the first indication that the transition between totality and normal daytime polarization patterns occurs over of a time period of approximately 13 s.Item Scanning wing-beat-modulation LIDAR for insect studies(Montana State University - Bozeman, College of Engineering, 2017) Tauc, Martin Jan; Chairperson, Graduate Committee: Joseph A. ShawThe spatial distributions of flying insects are not well understood since most sampling methods - Malaise traps, sticky traps, vacuum traps, light traps - are not suited to documenting movements or changing distributions of various insects on short time scales. These methods also capture and kill the insects. To noninvasively monitor the spatial distributions of flying insects, we developed and implemented a scanning lidar system that measured wing-beat-modulation. Transmitting and receiving optics were mounted to a telescope that was attached to a scanning mount. As it scanned, the lidar collected and analyzed the light scattered from insect wings of various species. Mount position and pulse time-of-flight determined spatial location and spectral analysis of the backscattered light provided clues to insect identity. During one day of a four day field campaign at Grand Teton National Park in June of 2016, 76 'very likely' insects and 662 'somewhat likely' insects were detected, with a maximum range to the insect of 87:6m for 'very likely' insects.