Browsing by Author "Torrion, Jessica A."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Impacts and Limits of Irrigation Water Management on Wheat Yield and Quality(2017-09) Torrion, Jessica A.; Stougaard, Robert N.Greater understanding of the impacts of irrigation timing in hard red spring wheat (Triticum aestivum L.) promotes better irrigation management, which optimizes the positive and minimizes the negative impacts on yield and quality. An experiment was conducted in 2014 to 2015 at Creston, MT. Eight cultivars (subplots) were randomly assigned to six water regimes (main plots). Aside from a rainfed check, irrigation treatments were: (i) replenishment of seasonal crop evapotranspiratory water loss via 32 mm per irrigation event (100ET); (ii) only 21 mm replenishment (66ET) per event to simulate season-long deficit; and three treatments in which 100ET replacement was terminated prior to grain fill completion by scheduling final irrigation at respective stages of: (iii) med-milk (100ET. MM), (iv) early milk (100ET. EM), (v) and anthesis (100ET. FL). The latter three treatments simulated end-of-season deficit irrigation. Irrigation treatment yields were similar, except for the lower 100ET. FL yield, indicating that wheat yield response to irrigation will be optimal in this environment as long as at least one irrigation event is supplied during grain fill. The cultivar yield responses to irrigation were similar. Irrigation increased biomass but had no impact on harvest index. Grain test weight (TWT) improved with irrigation. Falling number varied by cultivar and generally decreased with irrigation, but only significantly in 100ET, 66ET, and 100ET. MM. Irrigation improved yield and TWT, particularly during the hot and dry year. Irrigation can be terminated before completion of grain fill with no impact on yield and quality. Identification of adaptive cultivars with reduced irrigation or changing weather is necessary for improved productivity and grain quality.Item Registration of ‘Dagmar’ hard red spring wheat(2020-02) Heo, Hwa-Young; Lanning, Susan P.; Lamb, Peggy F.; Nash, Deanna L.; Wichman, David M.; Eberly, Jed O.; Carr, P.; Kephart, Ken D.; Stougaard, Robert N.; Torrion, Jessica A.; Miller, J.; Chen, Chengci; Holen, Doug L.; Blake, Nancy K.; Talbert, Luther E.‘Dagmar’ hard red spring wheat (Triticum aestivum L.) (Reg. no. CV‐1158, PI 690450) was released by the Montana Agricultural Experiment Station because of its excellent yield potential in dryland areas of Montana, solid stems, and superior end‐use quality. Dagmar was a selection from the cross MT1133/MT1148 and was tested as experimental line MT1621. Dagmar has similar grain yield potential to ‘Vida’, the most widely grown cultivar in Montana. Stems of Dagmar are more solid than those of Vida, suggesting increased resistance to the wheat stem sawfly (Cephus cinctus Norton). Dagmar has higher grain protein and stronger gluten than Vida. Thus, Dagmar should be useful in Montana and adjoining states facing drought and wheat stem sawfly pressure.Item Registration of ‘StandClear CLP’ hard red winter wheat(2020-06) Berg, Jim E.; Kephart, Ken D.; Lamb, Peggy F.; Davis, Edward S.; Eberly, Jed O.; Miller, John H.; Chen, Chengci; Pradhan, G. P.; Torrion, Jessica A.; Ramsfield, Ron; Smith, Vincent H.; Nash, Deanna L.; Holen, Doug L.; Cook, Jason P.; Gale, Sam; Jin, Yue; Chen, X.; Bruckner, Phil L.‘StandClear CLP’ (Reg. no. CV-1162, PI 693236) hard red winter (HRW) wheat (Triticum aestivum L.) was developed and released by the Montana Agricultural Experiment Station and exclusively licensed to Loveland Products, Inc., in 2020. StandClear CLP is a two-gene Clearfield, semisolid-stem wheat intended for use with the selective imidazolinone (IMI) herbicide imazamox. StandClear CLP resulted from a cross of MTS0531 to an IMI herbicide tolerant F1 plant from a population segregating for two acetohydroxyacid synthase (AHAS) genes [TaAHAS1D and TaAHAS1B]. Original herbicide tolerance donors were IMI ‘Fidel’ (TX12588*4/FS2, BASF) for allele TaAHAS1D via descended experimental lines MTCL0309 and MTCL0510, and proprietary hard red spring wheat line CDC Teal 11A (BASF Corporation) for allele TaAHAS1B. StandClear CLP was selected as a F6:7 headrow in 2014 following multiple cycles of phenotypic mass selection for IMI herbicide tolerance and stem solidness. StandClear CLP was tested under the experimental number MTCS1601 from 2016 to 2019 in Montana for field performance, herbicide tolerance, and end-use quality. StandClear CLP is a high-yielding, Clearfield HRW wheat cultivar with intermediate stem solidness, moderate host plant resistance to wheat stem sawfly, and acceptable milling and baking quality.Item Warm-Season Forage Options in Northern Dryland Regions(2020-06) Carr, Patrick M.; Boss, Darrin L.; Chen, Chengci; Dafoe, Julia M.; Eberly, Jed O.; Fordyce, Simon; Hydner, Roger M.; Fryer, Heather K.; Lachowiec, Jennifer A.; Lamb, Peggy F.; McVay, Kent A.; Khan, Qasim A.; Miller, Perry R.; Miller, Zachariah J.; Torrion, Jessica A.Rotating summer fallow with wheat (Triticum spp.) is done in dryland grain farming at upper latitudes to stabilize yields over time and to prevent crop failure. However, summer fallow is costly since weeds must be controlled and crops are not grown. Replacing summer fallow with grain crops can generate low economic returns. Previous research indicated that annual cool‐season forages can be substituted for summer fallow in dryland cropping systems. Our objective was to determine if annual warm‐season species were suited for forage production in monocultures and polycultures in the U.S. northern Great Plains. Dry matter (DM) production by 20 warm‐ and cool‐season crop monocultures and 4 polycultures was determined across six environments during 2016, and by 25 warm‐ and cool‐season crop monocultures and polycultures across four environments from 2016 through 2018. Maize (Zea mays L.) monoculture produced forage DM in amounts equal to, or greater than, those produced by other warm‐ and cool‐season crop treatments (P < 0.05). Maize DM production averaged 2.5 to 5.7 Mg ha−1, depending on the study and environment. Sorghum (Sorghum bicolor L.), foxtail millet [Setaria italica (L.) P. Beauv.] and sunflower (Helianthus annuus L.) also produced relatively large amounts of forage DM. Polycultures failed to produce more DM than monocultures consistently (P > 0.40). These results indicate that maize and other warm‐season crops are adapted for dryland forage production in cool regions at upper latitudes. Additional research is needed to determine the impacts of annual warm‐season forages on grain yield in a forage‐wheat crop sequence.