Browsing by Author "VanEngelen, Michael R."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Application of molecular techniques to elucidate the influence of cellulosic waste on the bacterial community structure at a simulated low level waste site(2010-03) Field, E. K.; D'Imperio, Seth; Miller, A. R.; VanEngelen, Michael R.; Gerlach, Robin; Lee, Brady D.; Apel, William A.; Peyton, Brent M.Low-level radioactive waste sites, including those at various U.S. Department of Energy (DOE) sites, frequently contain cellulosic waste in the form of paper towels, cardboard boxes, or wood contaminated with heavy metals and radionuclides such as chromium and uranium. To understand how the soil microbial community is influenced by the presence of cellulosic waste products, multiple soil samples were obtained from a non-radioactive model low-level waste test pit at the Idaho National Laboratory. Samples were analyzed using 16S rRNA gene clone libraries and 16S rRNA gene microarray (PhyloChip) analyses. Both methods revealed changes in the bacterial community structure with depth. In all samples, the PhyloChip detected significantly more Operational Taxonomic Units (OTUs), and therefore relative diversity, than the clone libraries. Diversity indices suggest that diversity is lowest in the Fill (F) and Fill Waste (FW) layers and greater in the Wood Waste (WW) and Waste Clay (WC) layers. Principal coordinates analysis and lineage specific analysis determined that Bacteroidetes and Actinobacteria phyla account for most of the significant differences observed between the layers. The decreased diversity in the FW layer and increased members of families containing known cellulose degrading microorganisms suggests the FW layer is an enrichment environment for these organisms. These results suggest that the presence of the cellulosic material significantly influences the bacterial community structure in a stratified soil system.Item UO2+2 speciation determines uranium toxicity and bioaccumulation in an environmental Pseudomonas sp. isolate(2010-04) VanEngelen, Michael R.; Field, E. K.; Gerlach, Robin; Lee, Brady D.; Apel, William A.; Peyton, Brent M.In the present study, experiments were performed to investigate how representative cellulosic breakdown products, when serving as growth substrates under aerobic conditions, affect hexavalent uranyl cation (UO2+2 ) toxicity and bioaccumulation within a Pseudomonas sp. isolate (designated isolate A). Isolate A taken from the Cold Test Pit South (CTPS) region of the Idaho National Laboratory (INL), Idaho Falls, ID, USA. The INL houses low-level uranium-contaminated cellulosic material and understanding how this material, and specifically its breakdown products, affect U-bacterial interactions is important for understanding UO2+2 fate and mobility. Toxicity was modeled using a generalized Monod expression. Butyrate, dextrose, ethanol, and lactate served as growth substrates. The potential contribution of bicarbonate species present in high concentrations was also investigated and compared with toxicity and bioaccumulation patterns seen in low-bicarbonate conditions. Isolate A was significantly more sensitive to UO2+2 and accumulated significantly more UO2+2 in low-bicarbonate concentrations. In addition, UO2+2 growth inhibition and bioaccumulation varied depending on the growth substrate. In the presence of high bicarbonate concentrations, sensitivity to UO2+2 inhibition was greatly mitigated, and did not vary between the four substrates tested. The extent of UO2+2 accumulation was also diminished. The observed patterns were related to UO2+2 aqueous complexation, as predicted by MINTEQ (ver. 2.52) (Easton, PA, USA). In the low- bicarbonate medium, the presence of positively charged and unstable UO2+2 -hydroxide complexes explained both the greater sensitivity of isolate A to UO2+2, and the ability of isolate A to accumulate significant amounts of UO2+2 . The exclusive presence of negatively charged and stable UO2+2 -carbonate complexes in the high bi-carbonate medium explained the diminished sensitivity of isolate A to UO2+2 toxicity, and limited ability of isolate A to accumulate UO2+2 .Item Uranium exerts acute toxicity by binding to pyrroloquinoline quinone cofactor(2010-12) VanEngelen, Michael R.; Szilagyi, Robert K.; Gerlach, Robin; Lee, Brady D.; Apel, William A.; Peyton, Brent M.Uranium as an environmental contaminant has been shown to be toxic to eukaryotes and prokaryotes; however, no specific mechanisms of uranium toxicity have been proposed so far. Here a combination of in vivo, in vitro, and in silico studies are presented describing direct inhibition of pyrroloquinoline quinone (PQQ)-dependent growth and metabolism by uranyl cations. Electrospray-ionization mass spectroscopy, UV-vis optical spectroscopy, competitive Ca2+/uranyl binding studies, relevant crystal structures, and molecular modeling unequivocally indicate the preferred binding of uranyl simultaneously to the carboxyl oxygen, pyridine nitrogen, and quinone oxygen of the PQQmolecule. The observed toxicity patterns are consistent with the biotic ligand model of acute metal toxicity. In addition to the environmental implications, this work represents the first proposed molecular mechanism of uranium toxicity in bacteria, and has relevance for uranium toxicity in many living systems.