Browsing by Author "Vinson, David S."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Changes in microbial communities and associated water and gas geochemistry across a sulfate gradient in coal beds: Powder River Basin, USA(2019-01) Schweitzer, Hannah D.; Ritter, Daniel J.; McIntosh, Jennifer C.; Barnhart, Elliott P.; Cunningham, Alfred B.; Vinson, David S.; Orem, William; Fields, Matthew W.Competition between microbial sulfate reduction and methanogenesis drives cycling of fossil carbon and generation of CH4 in sedimentary basins. However, little is understood about the fundamental relationship between subsurface aqueous geochemistry and microbiology that drives these processes. Here we relate elemental and isotopic geochemistry of coal-associated water and gas to the microbial community composition from wells in two different coal beds across CH4 and SO42− gradients (Powder River Basin, Montana, USA). Areas with high CH4 concentrations generally have higher alkalinity and δ13C-DIC values, little to no SO42−, and greater conversion of coal-biodegradable organics to CH4 (based on δ13C-CH4 and δ13C-CO2 values). Wells with SO42− concentrations from 2 to 10 mM had bacterial populations dominated by several different sulfate-reducing bacteria and archaea that were mostly novel and unclassified. In contrast, in wells with SO42− concentrations <1 mM, the sequences were dominated by presumptive syntrophic bacteria as well as archaeal Methanosarcinales and Methanomicrobiales. The presence of sequences indicative of these bacteria in low SO42− methanogenic wells may suggest a syntrophic role in coal biodegradation and/or the generation of methanogenic substrates from intermediate organic compounds. Archaeal sequences were observed in all sampled zones, with an enrichment of sequences indicative of methanogens in low SO42− zones and unclassified sequences in high SO42− zones. However, sequences indicative of Methanomassiliicoccales were enriched in intermediate SO42− zones and suggest tolerance to SO42− and/or alternative metabolisms in the presence of SO42−. Moreover, sequences indicative of methylotrophic methanogens were more prevalent in an intermediate SO42− and CH4 well and results suggest an important role for methylotrophic methanogens in critical zone transitions. The presented results demonstrate in situ changes in bacterial and archaeal population distributions along a SO42− gradient associated with recalcitrant, organic carbon that is biodegraded and converted to CO2 and/or CH4.Item Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed(2016-05) Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J. P.; Ritter, Daniel J.; McIntosh, Jennifer C.; Clark, Arthur C.; Ruppert, Leslie F.; Cunningham, Alfred B.; Vinson, David S.; Orem, William; Fields, Matthew W.Biogenic coalbed methane (CBM), a microbially-generated source of natural gas trapped within coal beds, is an important energy resource in many countries. Specific bacterial populations and enzymes involved in coal degradation, the potential rate-limiting step of CBM formation, are relatively unknown. The U.S. Geological Survey (USGS) has established a field site, (Birney test site), in an undeveloped area of the Powder River Basin (PRB), with four wells completed in the Flowers-Goodale coal bed, one in the overlying sandstone formation, and four in overlying and underlying coal beds (Knoblach, Nance, and Terret). The nine wells were positioned to characterize the hydraulic conductivity of the Flowers-Goodale coal bed and were selectively cored to investigate the hydrogeochemistry and microbiology associated with CBM production at the Birney test site. Aquifer-test results indicated the Flowers-Goodale coal bed, in a zone from about 112 to 120 m below land surface at the test site, had very low hydraulic conductivity (0.005 m/d) compared to other PRB coal beds examined. Consistent with microbial methanogenesis, groundwater in the coal bed and overlying sandstone contain dissolved methane (46 mg/L average) with low δ13C values (− 67‰ average), high alkalinity values (22 meq/kg average), relatively positive δ13C-DIC values (4‰ average), and no detectable higher chain hydrocarbons, NO3−, or SO42 −. Bioassay methane production was greatest at the upper interface of the Flowers-Goodale coal bed near the overlying sandstone. Pyrotag analysis identified Aeribacillus as a dominant in situ bacterial community member in the coal near the sandstone and statistical analysis indicated Actinobacteria predominated coal core samples compared to claystone or sandstone cores. These bacteria, which previously have been correlated with hydrocarbon-containing environments such as oil reservoirs, have demonstrated the ability to produce biosurfactants to break down hydrocarbons. Identifying microorganisms involved in coal degradation and the hydrogeochemical conditions that promote their activity is crucial to understanding and improving in situ CBM production.