Browsing by Author "Watt, Connie"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Bispecific Anti-HIV Immunoadhesins That Bind Gp120 and Gp41 Have Broad and Potent HIV-Neutralizing Activity(MDPI AG, 2021-07) Pincus, Seth H.; Craig, Ryan B.; Weachter, Lauren; LaBranche, Celia C.; Nabi, Rafiq; Watt, Connie; Raymond, Mark; Peters, Tami; Song, Kejing; Maresh, Grace A.; Montefiori, David C.; Kozlowski, Pamela A.We have constructed bispecific immunoglobulin-like immunoadhesins that bind to both the HIV-envelope glycoproteins: gp120 and gp41. These immunoadhesins have N terminal domains of human CD4 engrafted onto the N-terminus of the heavy chain of human anti-gp41 mAb 7B2. Binding of these constructs to recombinant Env and their antiviral activities were compared to that of the parental mAbs and CD4, as well as to control mAbs. The CD4/7B2 constructs bind to both gp41 and gp140, as well as to native Env expressed on the surface of infected cells. These constructs deliver cytotoxic immunoconjugates to HIV-infected cells, but not as well as a mixture of 7B2 and sCD4, and opsonize for antibody-mediated phagocytosis. Most surprisingly, given that 7B2 neutralizes weakly, if at all, is that the chimeric CD4/7B2 immunoadhesins exhibit broad and potent neutralization of HIV, comparable to that of well-known neutralizing mAbs. These data add to the growing evidence that enhanced neutralizing activity can be obtained with bifunctional mAbs/immunoadhesins. The enhanced neutralization activity of the CD4/7B2 chimeras may result from cross-linking of the two Env subunits with subsequent inhibition of the pre-fusion conformational events that are necessary for entry.Item Soluble CD4 and low molecular weight CD4-mimetic compounds sensitize cells to be killed by anti-HIV cytotoxic immunoconjugates(American Society for Microbiology, 2023-09) Pincus, Seth H.; Stackhouse, Megan; Watt, Connie; Ober, Kelli; Cole, Frances M.; Chen, Hung-Ching; Smith III, Amos B.; Peters, TamiThe reservoir of HIV-infected cells that persist in the face of effective anti-retroviral therapy (ART) is the barrier to curing HIV infection. These long-lived CD4+ cells carry a functional provirus that can become activated upon immune stimulation. When ART is stopped, this leads to a rapid rebound in viremia. A variety of approaches are proposed to eliminate these cells, many dependent upon the expression of virus proteins. We are examining the use of cytotoxic immunoconjugates targeting the HIV envelope protein (Env) as a method to eradicate cells producing virus and have demonstrated that soluble CD4 enhances the cytotoxic effect of gp41-targeted immunoconjugates. Mechanisms include increased antigen exposure and greater internalization of the immunoconjugate. Here we have tested different protein forms of CD4 and the small molecule CD4-mimetic BNM-III-170 for their effects on cells expressing cell-surface Env. Effects studied include sensitization to immunoconjugate killing, cell surface antigen expression, viability, and virus secretion. The CD4 proteins and BNM-III-170 produced comparable effects in these Env-expressing cell lines, each sensitizing cells to cytotoxicity by anti-gp41 immunoconjugates. The results provide further evidence that low molecular weight CD4 mimetics produce biologic effects similar to those caused by soluble CD4 itself and suggest additional therapeutic uses for these molecules.