Browsing by Author "Willits, Deborah Ann"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Detection of Ustilago hordei in barley leaf tissue by polymerase chain reaction and analysis of the MAT-2 pheromone and pheromone receptor genes(Montana State University - Bozeman, College of Agriculture, 1998) Willits, Deborah AnnItem A Human ferritin iron oxide nano-composite magnetic resonance contrast agent(2008-11) Uchida, M.; Terashima, Masahiro; Cunningham, Charles H.; Suzuki, Yoriyasu; Willits, Deborah Ann; Willis, Ann F.; Yang, Philip C.; Tsao, Philip S.; McConnell, Michael V.; Young, Mark J.; Douglas, TrevorMacrophages play important roles in the immunological defense system, but at the same time they are involved in inflammatory diseases such as atherosclerosis. Therefore, imaging macrophages is critical to assessing the status of these diseases. Toward this goal, a recombinant human H chain ferritin (rHFn)-iron oxide nano composite has been investigated as an MRI contrast agent for labeling macrophages. Iron oxide nanoparticles in the form of magnetite (or maghemite) with narrow size distribution were synthesized in the interior cavity of rHFn. The composite material exhibited the R2 relaxivity comparable to known iron oxide MRI contrast agents. Furthermore, the mineralized protein cages are readily taken up by macrophages in vitro and provide significant T2* signal loss of the labeled cells. These results encourage further investigation into the development of the rHFn-iron oxide contrast agent to assess inflammatory disease status such as macrophage-rich atherosclerotic plaques in vivo.Item Intracellular distribution of macrophage targeting ferritin–iron oxide nanocomposite(2009-01) Uchida, M.; Willits, Deborah Ann; Muller, Karin; Willis, Ann F.; Jackiw, Larissa; Jutila, Mark A.; Young, Mark J.; Porter, Alexandra E.; Douglas, TrevorIntracellular distribution of iron oxide nanoparticlesincorporated within a ferritin mutant that displays genetically introduced cell-targeted peptides (RGD-4C) on its exterior surface are investigated using scanning transmission electron microscopy with a high-angle annular dark-field detector. The particles (indicated by arrows) internalized into macrophages much more effectively than those with noncell-targeted ferritin.