Browsing by Author "Wofsy, Steven C."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes(2007-04) Yuan, Wenping; Liu, Shuguang; Zhou, Guangsheng; Zhou, Guoyi; Tieszen, Larry L.; Baldocchi, Dennis D.; Bernhofer, Christian; Gholz, Henry; Goldstein, Allen H.; Goulden, Michael L.; Hollinger, David Y.; Hu, Yueming; Law, Beverly E.; Stoy, Paul C.; Vesala, Timo; Wofsy, Steven C.The quantitative simulation of gross primary production (GPP) at various spatial and temporal scales has been a major challenge in quantifying the global carbon cycle. We developed a light use efficiency (LUE) daily GPP model from eddy covariance (EC) measurements. The model, called EC-LUE, is driven by only four variables: normalized difference vegetation index (NDVI), photosynthetically active radiation (PAR), air temperature, and the Bowen ratio of sensible to latent heat flux (used to calculate moisture stress). The EC-LUE model relies on two assumptions: First, that the fraction of absorbed PAR (fPAR) is a linear function of NDVI; Second, that the realized light use efficiency, calculated from a biome-independent invariant potential LUE, is controlled by air temperature or soil moisture, whichever is most limiting. The EC-LUE model was calibrated and validated using 24,349 daily GPP estimates derived from 28 eddy covariance flux towers from the AmeriFlux and EuroFlux networks, covering a variety of forests, grasslands and savannas. The model explained 85% and 77% of the observed variations of daily GPP for all the calibration and validation sites, respectively. A comparison with GPP calculated from the Moderate Resolution Imaging Spectroradiometer (MODIS) indicated that the EC-LUE model predicted GPP that better matched tower data across these sites. The realized LUE was predominantly controlled by moisture conditions throughout the growing season, and controlled by temperature only at the beginning and end of the growing season. The EC-LUE model is an alternative approach that makes it possible to map daily GPP over large areas because (1) the potential LUE is invariant across various land cover types and (2) all driving forces of the model can be derived from remote sensing data or existing climate observation networks.Item Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations(2006-07) Heinsch, Faith A.; Zhao, Maosheng; Running, Steven W.; Kimball, John S.; Nemani, Ramakrishna R.; Davis, Kenneth J.; Cook, Bruce D.; Desai, Ankur R.; Ricciuto, Daniel M.; Law, Beverly E.; Oechel, Walter C.; Kwon, Hyojung; Wofsy, Steven C.; Dunn, Allison L.; Munger, J. William; Baldocchi, Dennis D.; Xu, Liukang; Hollinger, David Y.; Richardson, Andrew D.; Stoy, Paul C.; Siqueira, Mario B. S.; Monson, Russell K.; Burns, Sean P.; Flanagan, Lawrence B.; Bolstad, Paul V.; Luo, HongyanThe Moderate Resolution Spectroradiometer (MODIS) sensor has provided near real-time estimates of gross primary production (GPP) since March 2000. We compare four years (2000 to 2003) of satellite-based calculations of GPP with tower eddy CO2 flux-based estimates across diverse land cover types and climate regimes. We examine the potential error contributions from meteorology, leaf area index (LAI)/fPAR, and land cover. The error between annual GPP computed from NASA's Data Assimilation Office's (DAO) and tower-based meteorology is 28%, indicating that NASA's DAO global meteorology plays an important role in the accuracy of the GPP algorithm. Approximately 62% of MOD15-based estimates of LAI were within the estimates based on field optical measurements, although remaining values overestimated site values. Land cover presented the fewest errors, with most errors within the forest classes, reducing potential error. Tower-based and MODIS estimates of annual GPP compare favorably for most biomes, although MODIS GPP overestimates tower-based calculations by 20%-30%. Seasonally, summer estimates of MODIS GPP are closest to tower data, and spring estimates are the worst, most likely the result of the relatively rapid onset of leaf-out. The results of this study indicate, however, that the current MODIS GPP algorithm shows reasonable spatial patterns and temporal variability across a diverse range of biomes and climate regimes. So, while continued efforts are needed to isolate particular problems in specific biomes, we are optimistic about the general quality of these data, and continuation of the MOD17 GPP product will likely provide a key component of global terrestrial ecosystem analysis, providing continuous weekly measurements of global vegetation productionItem A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes(2006-01) Richardson, Andrew D.; Hollinger, David Y.; Burba, George G.; Davis, Kenneth J.; Lawrence B., Flanagan; Katul, Gabriel G.; Munger, J. William; Ricciuto, Daniel M.; Stoy, Paul C.; Suyker, Andrew E.; Verma, Shashi B.; Wofsy, Steven C.Measured surface-atmosphere fluxes of energy (sensible heat, H, and latent heat, LE) and CO2 (FCO2) represent the “true” flux plus or minus potential random and systematic measurement errors. Here, we use data from seven sites in the AmeriFlux network, including five forested sites (two of which include “tall tower” instrumentation), one grassland site, and one agricultural site, to conduct a cross-site analysis of random flux error. Quantification of this uncertainty is a prerequisite to model-data synthesis (data assimilation) and for defining confidence intervals on annual sums of net ecosystem exchange or making statistically valid comparisons between measurements and model predictions. We differenced paired observations (separated by exactly 24 h, under similar environmental conditions) to infer the characteristics of the random error in measured fluxes. Random flux error more closely follows a double-exponential (Laplace), rather than a normal (Gaussian), distribution, and increase as a linear function of the magnitude of the flux for all three scalar fluxes. Across sites, variation in the random error follows consistent and robust patterns in relation to environmental variables. For example, seasonal differences in the random error for H are small, in contrast to both LE and FCO2, for which the random errors are roughly three-fold larger at the peak of the growing season compared to the dormant season. Random errors also generally scale with Rn (H and LE) and PPFD (FCO2). For FCO2 (but not H or LE), the random error decreases with increasing wind speed. Data from two sites suggest that FCO2 random error may be slightly smaller when a closed-path, rather than open-path, gas analyzer is used.Item On the ability of a global atmospheric inversion to constrain variations of CO2 fluxes over Amazonia(2015-01) Molina, L.; Broquet, G.; Imbach, P.; Chevallier, Frederic; Poulter, Benjamin; Bonal, D.; Burban, B.; Ramonet, M.; Gatti, L. V.; Wofsy, Steven C.; Munger, J. William; Dlugokencky, E.; Ciais, PhilippeThe exchanges of carbon, water, and energy between the atmosphere and the Amazon Basin have global implications for current and future climate. Here, the global atmospheric inversion system of the Monitoring of Atmospheric Composition and Climate service (MACC) was used to further study the seasonal and interannual variations of biogenic CO2 fluxes in Amazonia. The system assimilated surface measurements of atmospheric CO2 mole fractions made over more than 100 sites over the globe into an atmospheric transport model. This study added four surface stations located in tropical South America, a region poorly covered by CO2 observations. The estimates of net ecosystem exchange (NEE) optimized by the inversion were compared to independent estimates of NEE upscaled from eddy-covariance flux measurements in Amazonia, and against reports on the seasonal and interannual variations of the land sink in South America from the scientific literature. We focused on the impact of the interannual variation of the strong droughts in 2005 and 2010 (due to severe and longer-than-usual dry seasons), and of the extreme rainfall conditions registered in 2009. The spatial variations of the seasonal and interannual variability of optimized NEE were also investigated. While the inversion supported the assumption of strong spatial heterogeneity of these variations, the results revealed critical limitations that prevent global inversion frameworks from capturing the data-driven seasonal patterns of fluxes across Amazonia. In particular, it highlighted issues due to the configuration of the observation network in South America and the lack of continuity of the measurements. However, some robust patterns from the inversion seemed consistent with the abnormal moisture conditions in 2009.