Browsing by Author "Xu, Zhe-Rui"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item A-site strontium doping effects on structure, magnetic, and photovoltaic properties of (Bi 1-x Sr x )FeO 3-δ multiferroic ceramics(2015) Tu, Chi-Shun; Xu, Zhe-Rui; Schmidt, V. Hugo; Chan, T.-S.; Chien, R. R.; Son, H.Raman spectroscopy, X-ray diffraction (XRD), magnetization hysteresis loop, synchrotron X-ray absorption spectroscopy, and photovoltaic effects have been measured in (Bi1−xSrx)FeO3−δ (BFO100xSr) ceramics for x=0.0, 0.05, 0.10, and 0.15. Raman spectra and XRD reveal a rhombohedral R3c structure in all compounds. A-site Sr2+ doping increases fluctuations in cation-site occupancy and causes broadening in Raman modes. BFO15Sr exhibits a strong ferromagnetic feature due to reduction of FeOFe bond angle evidenced by the extended synchrotron X-ray absorption fine structure. The heterostructure of indium tin oxide (ITO) film/(Bi1−xSrx)FeO3−δ ceramic/Au film exhibit clear photovoltaic (PV) responses under blue illumination of λ=405 nm. The maximal power-conversion efficiency and external quantum efficiency in ITO/BFO5Sr/Au are about 0.004% and 0.2%, respectively. A model based on optically excited charges in the depletion region between ITO and (Bi1−xSrx)FeO3−δ can well describe open-circuit voltage and short-circuit current as a function of illumination intensity.Item A-site strontium doping effects on structure, magnetic, and photovoltaic properties of (Bi1−xSrx)FeO3−δ multiferroic ceramics(2015-03) Tu, Chi-Shun; Xu, Zhe-Rui; Schmidt, V. Hugo; Chan, Ting-Shan; Chien, R.R.; Son, HyungbinRaman spectroscopy, X-ray diffraction (XRD), magnetization hysteresis loop, synchrotron X-ray absorption spectroscopy, and photovoltaic effects have been measured in (Bi1−xSrx)FeO3−δ (BFO100xSr) ceramics for x=0.0, 0.05, 0.10, and 0.15. Raman spectra and XRD reveal a rhombohedral R3c structure in all compounds. A-site Sr2+ doping increases fluctuations in cation-site occupancy and causes broadening in Raman modes. BFO15Sr exhibits a strong ferromagnetic feature due to reduction of Fesingle bondOsingle bondFe bond angle evidenced by the extended synchrotron X-ray absorption fine structure. The heterostructure of indium tin oxide (ITO) film/(Bi1−xSrx)FeO3−δ ceramic/Au film exhibit clear photovoltaic (PV) responses under blue illumination of λ=405 nm. The maximal power-conversion efficiency and external quantum efficiency in ITO/BFO5Sr/Au are about 0.004% and 0.2%, respectively. A model based on optically excited charges in the depletion region between ITO and (Bi1−xSrx)FeO3−δ can well describe open-circuit voltage and short-circuit current as a function of illumination intensity.Item Calcium-doping effects on photovoltaic response and structure in multiferroic BiFeO3 ceramics(2013) Tu, Chi-Shun; Hung, C.-M.; Xu, Zhe-Rui; Schmidt, V. Hugo; Ting, Yi; Chien, R.R.; Peng, Y.-T.; Anthoninappen, J.Photovoltaic (PV) effects, power-conversion efficiencies, and structures have been systematically measured in (Bi1− x Ca x )FeO3−δ ceramics for x = 0.05, 0.10, and 0.15. The heterostructures of indium tin oxide (ITO) film/(Bi1− x Ca x )FeO3−δ ceramics/Au film exhibit significant PV effects under illumination of λ = 405 nm. The maximum power-conversion efficiency in the ITO/(Bi0.90Ca0.10)FeO2.95 (BFO10C)/Au can reach 0.0072%, which is larger than 0.0025% observed in the graphene/polycrystalline BFO/Pt films [Zang et al., Appl. Phys. Lett. 99, 132904 (2011)]. A theoretical model based on optically excited current in the depletion region between ITO film and Ca-doped BFO ceramics is used to describe the I-V characteristic, open-circuit voltage, and short-circuit current density as a function of illumination intensity. This work suggests that the Ca-substitution can reduce the rhombohedral distortion and stabilize the single-phase structure.Item Effect of diamagnetic barium substitution on magnetic and photovoltaic properties in multiferroic BiFeO3(2014) Hung, C.-M.; Tu, Chi-Shun; Xu, Zhe-Rui; Chang, L.-Y.; Schmidt, V. Hugo; Chien, R.R.; Chang, W.-C.Spontaneous magnetization and photovoltaic (PV) effects have been measured in (Bi1- x Ba x )FeO3-δ ceramics for x = 0.05, 0.10, and 0.15. The substitution of Ba2+ ion in the A site of the perovskite unit cell can effectively enhance the ferromagnetic magnetization. The heterostructure of indium tin oxide (ITO) film/(Bi1- x Ba x )FeO3-δ ceramic/Au film exhibits significant PV effects under illumination of λ = 405 nm. The PV responses decrease with increasing Ba concentration. The maximum power-conversion efficiency in the ITO/(Bi0.95Ba0.5)FeO2.95/Au can reach 0.006%. A theoretical model based on optically excited current in the depletion region between ITO film and (Bi1- x Ba x )FeO3-δ ceramics is used to describe the I-V characteristic, open-circuit voltage (V oc), and short-circuit current density (J sc) as a function of light intensity.Item Photo-induced electric responses in heterostructure of indium tin oxide/(Bi 1-x Ca x FeO 3-δ /Au,(2014) Hung, C.-M.; Tu, Chi-Shun; Xu, Zhe-Rui; Schmidt, V. Hugo; Chien, R. R.Photovoltaic effects in heterostructure of indium tin oxide (ITO)/(Bi 1_x Ca x )FeO 3_δ multiferroic ceramics/Au (x = 0.0 and 0.15) have been measured under illuminations of λ = 405 and 445 nm. Open-circuit voltage (Voc), short-circuit current density (Jsc), and power conversion efficiency (η) show strong dependences on light wavelength and intensity. For λ = 405 nm, V oc and J sc can reach 0.62 V and 0.042 A/m 2 for BiFeO 3 (BFO), and 0.48 V and 0.30 A/m 2 for (Bi 0.85 Ca 0.15 )FeO 2.925 (BFO-15%Ca) at I N 9.1×10 2 W/m 2 . The maximum power conversion efficiency for λ = 405 nm can reach η N 0.002% for BFO and η N 0.0035% for BFO-15%Ca, which are comparable with 0.0025% observed in graphene/polycrystalline BFO/Pt films. A model based on forward p-n junction, reverse p-n junction and photo-excited currents in the interface between ITO film and (Bi 1_x Ca x )FeO 3_δ ceramic, was developed to describe Voc and Jsc as a function of incident light intensity. The theoretical fits agree well with experimental results. The depletion-region widths for λ = 405 nm were calculated as a function of light intensity. The calculated depletion-region widths without illumination are do N 210 nm in BFO and do N 340 nm in BFO-15%Ca.Item Raman vibrations, domain structures, and photovoltaic effects in A-site La-modified BiFeO 3 multiferroic ceramics(2015) Tu, Chi-Shun; Chen, Cheng-Sao; Chen, Pin-Yi; Xu, Zhe-Rui; Idzerda, Yves U.; Schmidt, V. Hugo; Lyu, M.-Q.; Chan, T.-S.; Liu, C.-Y.Micro‐Raman spectroscopy, X‐ray diffraction, high‐resolution transmission electron microscopy (TEM), oxygen vacancies, synchrotron X‐ray absorption spectroscopy, magnetizations, optical band gaps, and photovoltaic (PV) effects have been studied in (Bi1−xLax)FeO3 (BFO100xL) ceramics for x = 0.0, 0.05, 0.10, and 0.15. XRD, Raman spectra, and TEM confirm a rhombohedral R3c symmetry with the tilted FeO6 oxygen octahedra in all compounds. The low‐frequency Raman vibrations become broader and shift toward higher frequency as La3+ increases. Fe K‐edge synchrotron X‐ray absorptions reveal that Fe3+ valence and Fe–O–Fe bond angle are not modified by the La3+ substitution. All compounds exhibit a linear antiferromagnetic feature. Optical transmission reveals band gaps in the range of 2.22–2.24 eV. The heterostructures of indium tin oxide (ITO) film/(Bi1−xLax)FeO3 ceramics/Au film show a p–n junction‐like I–V characteristic behavior. The maximal PV power conversion efficiency can reach 0.19% in ITO/BFO15L/Au under illumination of λ = 405 nm. A junction‐like theoretical model can reasonably describe open‐circuit voltage and short‐circuit current as a function of illumination intensity.