Browsing by Author "Yang, Wenqiang"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Altered fermentative metabolism in Chlamydomonas reinhardtii mutants lacking pyruvate formate lyase and both pyruvate formate lyase and alcohol dehydrogenase(2012-02) Catalanotti, C.; Dubini, A.; Subramanian, V.; Yang, Wenqiang; Magneschi, L.; Mus, Florence; Seibert, M.; Posewitz, Matthew C.; Grossman, A. R.Chlamydomonas reinhardtii, a unicellular green alga, often experiences hypoxic/anoxic soil conditions that activate fermentation metabolism. We isolated three Chlamydomonas mutants disrupted for the pyruvate formate lyase (PFL1) gene; the encoded PFL1 protein catalyzes a major fermentative pathway in wild-type Chlamydomonas cells. When the pfl1 mutants were subjected to dark fermentative conditions, they displayed an increased flux of pyruvate to lactate, elevated pyruvate decarboxylation, ethanol accumulation, diminished pyruvate oxidation by pyruvate ferredoxin oxidoreductase, and lowered H2 production. The pfl1-1 mutant also accumulated high intracellular levels of lactate, succinate, alanine, malate, and fumarate. To further probe the system, we generated a double mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but it also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars and a decrease in dark, fermentative H2 production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant reroutes glycolytic carbon to lactate and glycerol. Although the metabolic adjustments observed in the mutants facilitate NADH reoxidation and sustained glycolysis under dark, anoxic conditions, the observed changes could not have been predicted given our current knowledge of the regulation of fermentation metabolism.Item Genetic disruption of both Chlamydomonas reinhardtii [FeFe]-hydrogenases: Insight into the role of HYDA2 in H2 production(2012-01) Meuser, Jonathan E.; D'Adamo, S.; Jinkerson, R. E.; Mus, Florence; Yang, Wenqiang; Ghirardi, ML; Seibert, M.; Grossman, A. R.; Posewitz, Matthew C.Chlamydomonas reinhardtii (Chlamydomonas throughout) encodes two [FeFe]-hydrogenases, designated HYDA1 and HYDA2. While HYDA1 is considered the dominant hydrogenase, the role of HYDA2 is unclear. To study the individual functions of each hydrogenase and provide a platform for future bioengineering, we isolated the Chlamydomonas hydA1-1, hydA2-1 single mutants and the hydA1-1 hydA2-1 double mutant. A reverse genetic screen was used to identify a mutant with an insertion in HYDA2, followed by mutagenesis of the hydA2-1 strain coupled with a H2 chemosensor phenotypic screen to isolate the hydA1-1 hydA2-1 mutant. Genetic crosses of the hydA1-1 hydA2-1 mutant to wild-type cells allowed us to also isolate the single hydA1-1 mutant. Fermentative, photosynthetic, and in vitro hydrogenase activities were assayed in each of the mutant genotypes. Surprisingly, analyses of the hydA1-1 and hydA2-1 single mutants, as well as the HYDA1 and HYDA2 rescued hydA1-1 hydA2-1 mutant demonstrated that both hydrogenases are able to catalyze H2 production from either fermentative or photosynthetic pathways. The physiology of both mutant and complemented strains indicate that the contribution of HYDA2 to H2 photoproduction is approximately 25% that of HYDA1, which corresponds to similarly low levels of in vitro hydrogenase activity measured in the hydA1-1 mutant. Interestingly, enhanced in vitro and fermentative H2 production activities were observed in the hydA1-1 hydA2-1 strain complemented with HYDA1, while maximal H2-photoproduction rates did not exceed those of wild-type cells.Item A Mutant in the ADH1 gene of Chlamydomonas reinhardtii elicits metabolic restructuring during anaerobiosis(2012-01) Magneschi, L.; Catalanotti, C.; Subramanian, V.; Dubini, A.; Yang, Wenqiang; Mus, Florence; Posewitz, Matthew C.; Seibert, M.; Perata, P.; Grossman, A. R.The green alga Chlamydomonas reinhardtii has numerous genes encoding enzymes that function in fermentative pathways. Among these, the bifunctional alcohol/acetaldehyde dehydrogenase (ADH1), highly homologous to the Escherichia coli AdhE enzyme, is proposed to be a key component of fermentative metabolism. To investigate the physiological role of ADH1 in dark anoxic metabolism, a Chlamydomonas adh1 mutant was generated. We detected no ethanol synthesis in this mutant when it was placed under anoxia; the two other ADH homologs encoded on the Chlamydomonas genome do not appear to participate in ethanol production under our experimental conditions. Pyruvate formate lyase, acetate kinase, and hydrogenase protein levels were similar in wild-type cells and the adh1 mutant, while the mutant had significantly more pyruvate:ferredoxin oxidoreductase. Furthermore, a marked change in metabolite levels (in addition to ethanol) synthesized by the mutant under anoxic conditions was observed; formate levels were reduced, acetate levels were elevated, and the production of CO2 was significantly reduced, but fermentative H2 production was unchanged relative to wild-type cells. Of particular interest is the finding that the mutant accumulates high levels of extracellular glycerol, which requires NADH as a substrate for its synthesis. Lactate production is also increased slightly in the mutant relative to the control strain. These findings demonstrate a restructuring of fermentative metabolism in the adh1 mutant in a way that sustains the recycling (oxidation) of NADH and the survival of the mutant (similar to wild-type cell survival) during dark anoxic growth.Item Reverse genetics in Chlamydomonas: a platform for isolating insertional mutants(2011-07) Gonzalez-Ballester, D.; Pootakham, W.; Mus, Florence; Yang, Wenqiang; Catalanotti, C.; Magneschi, L.; de Montaigu, A.; Higuera, J. J.; Prior, M.; Galvan, A.; Fernandez, E.; Grossman, A. R.A method was developed to identify insertional mutants of Chlamydomonas reinhardtii disrupted for selected target genes. The approach relies on the generation of thousands of transformants followed by PCR-based screenings that allow for identification of strains harboring the introduced marker gene within specific genes of interest. Our results highlight the strengths and limitations of two independent screens that differed in the nature of the marker DNA used (PCR-amplified fragment containing the plasmid-free marker versus entire linearized plasmid with the marker) and in the strategies used to maintain and store transformants.