Theses and Dissertations at Montana State University (MSU)
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/733
Browse
1 results
Search Results
Item Insect microbe interactions: honey bee antiviral defense mechanisms and characterization of Spiroplasma colonizing wheat stem sawfly(Montana State University - Bozeman, College of Agriculture, 2017) Brutscher, Laura Marie; Chairperson, Graduate Committee: Michelle Flenniken; Katie F. Daughenbaugh and Michelle L. Flenniken were co-authors of the article, 'Virus and DSRNA-triggered transcriptional responses reveal key components of honey bee antiviral defense' in the journal 'Scientific reports' which is contained within this thesis.; Curtis Fowler, David K. Weaver and Carl J. Yeoman were co-authors of the article, 'Identification and characterization of a Spiroplasma sp. (Ixodetis clade) associated with the wheat stem sawfly (Cephus cinctus)' submitted to the journal 'Microbial ecology' which is contained within this thesis.Insects play important roles in ecosystems throughout the world. There are many beneficial insects, including those that pollinate plants in diverse landscapes, while other insects are considered agricultural pests. Regardless of ecological role, insects are hosts for microbial symbionts and pathogens. Some microorganisms (e.g., viruses) are harmful to insect health, but many microbial symbionts aid in host biological processes. The projects herein describe the interplay between insects and microbes; specifically (1) honey bee host - virus interactions and (2) identification and characterization of a wheat stem sawfly-associated Spiroplasma. Honey bees (Apis mellifera) are pollinators of numerous agricultural crops and other plant species. Since 2006, there have been high annual losses of honey bee colonies in the U.S. (~33%) and throughout the world. Colony deaths are influenced by multiple factors including RNA virus infections. Honey bee antiviral defense involves several immune pathways, including dsRNA mediated responses, (i.e., RNA interference and non-sequence-specific dsRNA-triggered responses), but their relative importance in antiviral defense is not well understood. To investigate honey bee antiviral defense, bees were infected with model virus in the absence or presence of dsRNA, which reduced virus abundance. Transcriptome-level analysis determined hundreds of genes were differentially expressed in response to co-treatment of dsRNA and virus, including immune-related genes. RNAi-mediated gene knockdown of two putative antiviral genes increased virus abundance and supported their antiviral role. Additional investigation of these and other genes will improve our understanding of dsRNA-mediated antiviral defense in honey bees. In contrast, wheat stem sawflies (Cephus cintus) are major wheat pests in the Northwest United States. Strategies that target endosymbionts of sawflies could reduce wheat crop losses. Hereunto, the microbes that colonize wheat stem sawfly have not been explored. Targeted DNA sequencing determined sawflies were colonized by a Spiroplasma species that has greatest 16S rRNA sequence identity with Ixodetis clade species. Metagenomic sequencing identified several Spiroplasma encoded genes involved in metabolism, which may be important to the sawfly host. Further characterization of honey bee-virus interactions and the role of Spiroplasma in sawfly health may contribute to limiting threats to global crop production and will further scientific understanding of non-model insect-microbe interactions.