Theses and Dissertations at Montana State University (MSU)

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/733

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Optimizing efficacy of Bromus tectorum (cheatgrass, downy brome) biological contorl in crops and rangelands
    (Montana State University - Bozeman, College of Agriculture, 2017) Ehlert, Krista Ann; Chairperson, Graduate Committee: Fabian D. Menalled; Jane M. Mangold (co-chair)
    Management of Bromus tectorum L., an annual grass invasive in western North America, has focused on single and integrated methods across crop and non-crop settings. Extensive literature does not exist on the integration of Pyrenophora semeniperda, a generalist grass pathogen for B. tectorum control, which has been used experimentally with some success to control B. tectorum. However, questions remain about (1) the risk of non-target effects on grassy species, (2) efficacy as part of an integrated management plan, and (3) efficacy under different environmental conditions and on different B. tectorum populations. I sought to answer these questions with three distinct studies. First, I assessed the risk of P. semeniperda on B. tectorum and 15 co-occurring grass species in a greenhouse setting. Pyrenophora semeniperda reduced B. tectorum density by 40% but also negatively affected density of 60% of the non-target species tested, particularly native rangeland grasses. Second, I integrated P. semeniperda as part of a two-year rangeland revegetation management plan that included an herbicide (imazapic), a fungicide seed treatment, and different perennial grass seeding rates. Application of P. semeniperda did not increase inoculum loads above ambient levels, and there was no effect of seeding rate or seed treatment on B. tectorum or seeded perennial grass density or biomass. However, B. tectorum density was reduced by 60% the first year with a single imazapic application. Lastly, I compared the effects of temperature (13°C, 17°C, 21°C, 25°C, 32°C) and B. tectorum populations (range, crop, sub-alpine) on infection and mortality rates caused by P. semeniperda using a temperature gradient table. Infection rates by P. semeniperda peaked at intermediate temperatures (17°C, 21°C, 25°C) for range and sub-alpine populations, but were generally low and not as influenced by temperature in the crop population. Overall, B. tectorum control with P. semeniperda is possible, provided (1) non-target effects are considered, especially for range species, (2) research is conducted to increase P. semeniperda inoculum loads above ambient levels and revegetation is used with other control tactics, and (3) we take into account how distinct B. tectorum populations respond to P. semeniperda.
  • Thumbnail Image
    Item
    Enhancing efficacy of herbicides to control cheatgrass on Montana range, pasture, and Conservation Reserve Program (CRP)
    (Montana State University - Bozeman, College of Agriculture, 2013) Ehlert, Krista Ann; Co-chairs, Graduate Committee: Jane M. Mangold and Richard E. Engel
    Chemical control of cheatgrass has recently focused on imazapic; factors such as application rate and timing and the presence of plant litter can influence imazapic's efficacy. Herbicides minimally impact the seedbank so integrating a seed-killing pathogen like Pyrenophora semeniperda may result in more effective and sustainable control. My research objectives were to 1) test the effect of imazapic application rate and timing and plant litter on cheatgrass and desired plant species in range and Conservation Reserve Program (CRP) lands, 2) conduct a soil bioassay to determine imazapic persistence as affected by imazapic rate, presence of plant litter, and time after herbicide application, and 3) determine whether the fungal pathogen P. semeniperda combined with a single imazapic application would provide greater control of cheatgrass than either strategy used alone. Objective 1 was carried out in range and CRP lands over two years with a factorial combination of four imazapic rates, two litter manipulation treatments and/or two application timings. In general, all three imazapic rates were equally effective in controlling cheatgrass compared to the non-sprayed control. Litter manipulation treatments had little effect on imazapic efficacy, but early application of imazapic resulted in more consistent cheatgrass control. Objective 2 was conducted in the greenhouse using soil samples collected over a six month period from the field study for Objective 1. Cucumber and cheatgrass were used as indicator species. All three herbicide rates reduced both species' biomass below that of the control. Again, litter manipulation had a minimal effect, and imazapic was found to persist through the following spring after spraying. Objective 3 was explored in a greenhouse experiment using a factorial combination of two imazapic treatments, two P. semeniperda treatments, and three seeding depths. Pyrenophora semeniperda reduced cheatgrass emergence, while cheatgrass biomass and density were affected by imazapic and the integration of imazapic and P. semeniperda. Imazapic and P. semeniperda did not favorably interact to reduce biomass and density; however, integrating these two tools holds promise as P. semeniperda can reduce the seedbank, and imazapic can control seedlings that escape pathogen-caused mortality.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.